ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Webinar: MC&A and safety in advanced reactors in focus
Towell
Russell
Prasad
The American Nuclear Society’s Nuclear Nonproliferation Policy Division recently hosted a webinar on updating material control and accounting (MC&A) and security regulations for the evolving field of advanced reactors.
Moderator Shikha Prasad (CEO, Srijan LLC) was joined by two presenters, John Russell and Lester Towell, who looked at how regulations that were historically developed for traditional light water reactors will apply to the next generation of nuclear technology and what changes need to be made.
J. A. Snipes, D. J. Campbell, T. Casper, Y. Gribov, A. Loarte, M. Sugihara, A. Winter, L. Zabeo
Fusion Science and Technology | Volume 59 | Number 3 | April 2011 | Pages 427-439
Lecture | Fourth ITER International Summer School (IISS2010) | doi.org/10.13182/FST11-A11688
Articles are hosted by Taylor and Francis Online.
Controlling the plasma in ITER to achieve its primary mission goals requires a complex and sophisticated plasma control system (PCS) that will be based initially on those of existing tokamaks, with some significant differences. An overview of the physical phenomena on which the ITER PCS will be based is presented with particular emphasis on magnetohydrodynamic (MHD) instabilities. The ITER PCS is logically structured into five parts that work closely together: (a) wall conditioning and tritium removal; (b) plasma axisymmetric magnetic control, including plasma initiation, inductive plasma current, position, and shape control; (c) plasma kinetic control, including fueling, power and particle flux to the first wall and divertor, noninductive plasma current, plasma pressure, and fusion burn control; (d) nonaxisymmetric control, which includes sawteeth, neoclassical tearing modes, edge localized modes, error fields and resistive wall modes, and Alfven eigenmodes; and (e) event handling, including changing the control algorithm or scenario when a plant system fault or a plasma-related event occurs that could affect plasma operation, which includes disruption mitigation. At high plasma performance, the control of MHD instabilities will become particularly important in ITER to maintain the fusion burn and to avoid potential damage to the first wall.