ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Two updated standards on criticality safety published
The American National Standards Institute (ANSI) recently approved two new American Nuclear Society standards covering different aspects of nuclear criticality safety (NCS).
D. Testa, Y. Fournier, T. Maeder, M. Toussaint, R. Chavan, J. Guterl, J. B. Lister, J-M. Moret, B. Schaller, G. Tonetti
Fusion Science and Technology | Volume 59 | Number 2 | February 2011 | Pages 376-396
Technical Paper | doi.org/10.13182/FST11-A11653
Articles are hosted by Taylor and Francis Online.
The ITER high-frequency (HF) magnetic sensor is currently intended to be a conventional, Mirnov-type, pickup coil, designed to provide measurements of magnetic instabilities with magnitude as low as [vertical bar]B[vertical bar] [approximately] 10-4 G at the position of the sensors and up to frequencies of at least 300 kHz. Previous prototyping of this sensor has indicated that a number of problems exist with this conventional design that are essentially related to the winding process and the differential thermal expansion between the metallic wire and the ceramic spacers. Hence, a nonconventional HF magnetic sensor has been designed and prototyped in-house in different variants using low-temperature co-fired ceramic (LTCC) technology, which involves a series of stacked ceramic substrates with a circuit board printed on them with a metallic ink (silver in our case). A method has then been developed to characterize the electrical properties of these sensors from the direct-current range up to frequencies in excess of 10 MHz. This method has been successfully benchmarked against the measurements for the built sensors and allows the electrical properties of LTCC prototypes to be predicted with confidence and without the need of actually building them, which therefore significantly simplifies future research and development (R&D) activities. When appropriate design choices are made, LTCC sensors are found to meet in full the volume occupation constraints and the requirements for the sensor's electrical properties that are set out for the ITER HF magnetic diagnostic system. This nonconventional technology is therefore recommended for further R&D and prototyping work, particularly for a three-dimensional sensor, and possibly using materials more suitable for use in the ITER environment, such as palladium and platinum inks, which could remove the perceived risk of transmutation under the heavy neutron flux that we may have with the Au (to Hg, then to Pb) or the Ag (to Cd) metallic inks currently used in LTCC devices.