ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Two updated standards on criticality safety published
The American National Standards Institute (ANSI) recently approved two new American Nuclear Society standards covering different aspects of nuclear criticality safety (NCS).
Masabumi Nishikawa
Fusion Science and Technology | Volume 59 | Number 2 | February 2011 | Pages 350-362
Technical Paper | doi.org/10.13182/FST11-A11651
Articles are hosted by Taylor and Francis Online.
The tritium balance in a D-T fusion power reactor to assure a self-sustainable tritium system is discussed in this paper, comparing the amount of tritium consumed in the fueling cycle including the plasma vessel with the amount of tritium generated in the blanket system. It is determined that recovering tritium from the redeposition layer is highly effective in achieving tritium balance. It is also known from this discussion that having a burning plasma with an overall burning efficiency >0.5% is needed to maintain tritium balance. A burning efficiency >3 to 4% is even better because the tritium balance increases. It is also known that a first-wall material having an overall trapping factor >0.005 or that having an overall permeation loss ratio >0.0001 is not desirable because the tritium loss at the plasma vessel becomes too large to maintain the tritium balance. This discussion also finds that a blanket system with an overall breeding ratio of [approximately]1.1 is desirable early in fusion development to maintain a short tritium doubling time.