ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
April 2025
Nuclear Technology
Fusion Science and Technology
Latest News
State legislation: Illinois bill aims to lift state’s remaining nuclear moratorium
A bill that would fully repeal the state’s entire moratorium on new nuclear projects survived a key deadline in the Illinois General Assembly last week.
To stay afloat in the spring legislative session, bills needed to be assigned to committee by March 21, and state Sen. Sue Rezin’s Senate Bill 1527 now sits with the Senate’s Energy and Public Utilities committee for review.
Jean Johner
Fusion Science and Technology | Volume 59 | Number 2 | February 2011 | Pages 308-349
Technical Paper | doi.org/10.13182/FST11-A11650
Articles are hosted by Taylor and Francis Online.
The HELIOS zero-dimensional code (Version 1.0) is described in detail in the case of deuterium-tritium (D-T) plasmas.The part of the code described solves in a self-consistent way the thermal equilibrium equation of a D-T thermonuclear plasma coupled to the conservation equation of the helium ash with a He*/E = const. constraint.Prominent features of the modeling are the following: description of any type of last closed magnetic surface (LCMS) by means of four portions of conics; exact closed form expressions for the poloidal surface, plasma volume, plasma surface, and LCMS length; exact surface and volume integration (for arbitrary aspect ratio) in the approximation of magnetic surfaces similar to the LCMS; parabolic type density profile and two-parameters temperature profile, both with pedestals and finite values at the separatrix; line radiation of light impurities calculated from tabulated radiative power loss functions; scalings for the pedestal temperature, L-H transition, and confinement time; modeling for the divertor thermal load; self-consistent radial build modeling for the plateau duration calculation; and detailed power plant thermal balance.Applications to ITER and DEMO operation and to inductive reactor design are given.