ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
Hash Hashemian: Visionary leadership
As Dr. Hashem M. “Hash” Hashemian prepares to step into his term as President of the American Nuclear Society, he is clear that he wants to make the most of this unique moment.
A groundswell in public approval of nuclear is finding a home in growing governmental support that is backed by a tailwind of technological innovation. “Now is a good time to be in nuclear,” Hashemian said, as he explained the criticality of this moment and what he hoped to accomplish as president.
M. Borghesi, J. Fuchs, S. V. Bulanov, A. J. MacKinnon, P. K. Patel, M. Roth
Fusion Science and Technology | Volume 49 | Number 3 | April 2006 | Pages 412-439
Technical Paper | Fast Ignition | doi.org/10.13182/FST06-A1159
Articles are hosted by Taylor and Francis Online.
The acceleration of high-energy ion beams (up to several tens of mega-electron-volts per nucleon) following the interaction of short (t < 1 ps) and intense (I2 > 1018 Wcm-2m-2) laser pulses with solid targets has been one of the most active areas of research in the last few years. The exceptional properties of these beams (high brightness and high spectral cutoff, high directionality and laminarity, and short burst duration) distinguish them from the lower-energy ions accelerated in earlier experiments at moderate laser intensities. In view of these properties, laser-driven ion beams can be employed in a number of groundbreaking applications in the scientific, technological, and medical areas. This paper reviews the main experimental results obtained in this area in recent years, the properties of the accelerated beams, the relevant theoretical and computational models, and the main applications that have been implemented or proposed.