ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
A. V. Anikeev et al.
Fusion Science and Technology | Volume 59 | Number 1 | January 2011 | Pages 104-107
doi.org/10.13182/FST11-A11584
Articles are hosted by Taylor and Francis Online.
The following work presents the results of investigation of microinstabilities in the anisotropic synthesized hot ion plasmoid (SHIP). Plasmoid is located in a small mirror section that is installed at one side of the GDT facility, which is an axially symmetric magnetic mirror device of gas dynamic trap type. To define the type and the parameters of the developing microinstability a set of high-frequency electrostatic and magnetic probes was used. The microinstability observed in the additional section of GDT is the Alfven ion cyclotron instability (AIC), because of small azimuthal wave numbers, magnetic field vector rotating in the direction of ion gyration and oscillation frequency below the actual ion cyclotron frequency. AIC instability threshold was registered at the following plasma parameters: fast ion density n > 3 × 1013 cm-3, ratio of ion pressure to magnetic field pressure [approximately equal] 0.02, anisotropy A = 40, ai/Rp [approximately equal] 0.23, where ai is the ion gyroradius and Rp is the plasmoid radius.