ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
Supreme Court rules against Texas in interim storage case
The Supreme Court voted 6–3 against Texas and a group of landowners today in a case involving the Nuclear Regulatory Commission’s licensing of a consolidated interim storage facility for spent nuclear fuel, reversing a decision by the 5th Circuit Court of Appeals to grant the state and landowners Fasken Land and Minerals (Fasken) standing to challenge the license.
A. V. Anikeev et al.
Fusion Science and Technology | Volume 59 | Number 1 | January 2011 | Pages 104-107
doi.org/10.13182/FST11-A11584
Articles are hosted by Taylor and Francis Online.
The following work presents the results of investigation of microinstabilities in the anisotropic synthesized hot ion plasmoid (SHIP). Plasmoid is located in a small mirror section that is installed at one side of the GDT facility, which is an axially symmetric magnetic mirror device of gas dynamic trap type. To define the type and the parameters of the developing microinstability a set of high-frequency electrostatic and magnetic probes was used. The microinstability observed in the additional section of GDT is the Alfven ion cyclotron instability (AIC), because of small azimuthal wave numbers, magnetic field vector rotating in the direction of ion gyration and oscillation frequency below the actual ion cyclotron frequency. AIC instability threshold was registered at the following plasma parameters: fast ion density n > 3 × 1013 cm-3, ratio of ion pressure to magnetic field pressure [approximately equal] 0.02, anisotropy A = 40, ai/Rp [approximately equal] 0.23, where ai is the ion gyroradius and Rp is the plasmoid radius.