ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
2024 ANS Winter Conference and Expo
November 17–21, 2024
Orlando, FL|Renaissance Orlando at SeaWorld
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
November 2024
Nuclear Technology
Fusion Science and Technology
Latest News
Federal watchdog says NRC needs to address more radiological risks, including “dirty bombs”
A new report from the U.S. Government Accountability Office finds that the Nuclear Regulatory Commission has not taken the steps needed to address the potential economic and societal radiological risks that could arise from a “dirty bomb.”
A. V. Anikeev et al.
Fusion Science and Technology | Volume 59 | Number 1 | January 2011 | Pages 104-107
doi.org/10.13182/FST11-A11584
Articles are hosted by Taylor and Francis Online.
The following work presents the results of investigation of microinstabilities in the anisotropic synthesized hot ion plasmoid (SHIP). Plasmoid is located in a small mirror section that is installed at one side of the GDT facility, which is an axially symmetric magnetic mirror device of gas dynamic trap type. To define the type and the parameters of the developing microinstability a set of high-frequency electrostatic and magnetic probes was used. The microinstability observed in the additional section of GDT is the Alfven ion cyclotron instability (AIC), because of small azimuthal wave numbers, magnetic field vector rotating in the direction of ion gyration and oscillation frequency below the actual ion cyclotron frequency. AIC instability threshold was registered at the following plasma parameters: fast ion density n > 3 × 1013 cm-3, ratio of ion pressure to magnetic field pressure [approximately equal] 0.02, anisotropy A = 40, ai/Rp [approximately equal] 0.23, where ai is the ion gyroradius and Rp is the plasmoid radius.