ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Webinar: MC&A and safety in advanced reactors in focus
Towell
Russell
Prasad
The American Nuclear Society’s Nuclear Nonproliferation Policy Division recently hosted a webinar on updating material control and accounting (MC&A) and security regulations for the evolving field of advanced reactors.
Moderator Shikha Prasad (CEO, Srijan LLC) was joined by two presenters, John Russell and Lester Towell, who looked at how regulations that were historically developed for traditional light water reactors will apply to the next generation of nuclear technology and what changes need to be made.
A. V. Anikeev et al.
Fusion Science and Technology | Volume 59 | Number 1 | January 2011 | Pages 104-107
doi.org/10.13182/FST11-A11584
Articles are hosted by Taylor and Francis Online.
The following work presents the results of investigation of microinstabilities in the anisotropic synthesized hot ion plasmoid (SHIP). Plasmoid is located in a small mirror section that is installed at one side of the GDT facility, which is an axially symmetric magnetic mirror device of gas dynamic trap type. To define the type and the parameters of the developing microinstability a set of high-frequency electrostatic and magnetic probes was used. The microinstability observed in the additional section of GDT is the Alfven ion cyclotron instability (AIC), because of small azimuthal wave numbers, magnetic field vector rotating in the direction of ion gyration and oscillation frequency below the actual ion cyclotron frequency. AIC instability threshold was registered at the following plasma parameters: fast ion density n > 3 × 1013 cm-3, ratio of ion pressure to magnetic field pressure [approximately equal] 0.02, anisotropy A = 40, ai/Rp [approximately equal] 0.23, where ai is the ion gyroradius and Rp is the plasmoid radius.