ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Webinar: MC&A and safety in advanced reactors in focus
Towell
Russell
Prasad
The American Nuclear Society’s Nuclear Nonproliferation Policy Division recently hosted a webinar on updating material control and accounting (MC&A) and security regulations for the evolving field of advanced reactors.
Moderator Shikha Prasad (CEO, Srijan LLC) was joined by two presenters, John Russell and Lester Towell, who looked at how regulations that were historically developed for traditional light water reactors will apply to the next generation of nuclear technology and what changes need to be made.
A. D. Beklemishev
Fusion Science and Technology | Volume 59 | Number 1 | January 2011 | Pages 90-93
doi.org/10.13182/FST11-A11581
Articles are hosted by Taylor and Francis Online.
Feedback control is routinely used in modern plasma traps for adjusting plasma equilibrium on the transport time scale. Some intrinsic properties of magnetic mirrors make it possible to employ feedback control for stabilization of flute modes as well. Purely electromagnetic plasma-control system that is independent of line-tying or plasma conductivity to the end-plates is proposed. The system adds transverse flexibility to the plasma column, so that any growing perturbation can be deformed to become anti-ballooning. Anti-ballooning form means reduced flute amplitude in bad-curvature regions and enhanced amplitude in expanders or other traditional stabilizers, so that energy of the perturbation becomes positive and the mode is suppressed. Detailed analysis shows that transverse flexibility (or tail-waving) of the discharge can be employed for feedback stabilization even without good-curvature regions. The only requirement is that the discharge inertia (field-weighted plasma density) and the pressure-weighted field curvature are differently distributed along the discharge. If based on inertia, the stabilization mechanism resembles the rope-walker act. Estimates show that the power cost of such stabilization is reasonable and scales inversely with the trap length.