ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Two updated standards on criticality safety published
The American National Standards Institute (ANSI) recently approved two new American Nuclear Society standards covering different aspects of nuclear criticality safety (NCS).
A. D. Beklemishev
Fusion Science and Technology | Volume 59 | Number 1 | January 2011 | Pages 90-93
doi.org/10.13182/FST11-A11581
Articles are hosted by Taylor and Francis Online.
Feedback control is routinely used in modern plasma traps for adjusting plasma equilibrium on the transport time scale. Some intrinsic properties of magnetic mirrors make it possible to employ feedback control for stabilization of flute modes as well. Purely electromagnetic plasma-control system that is independent of line-tying or plasma conductivity to the end-plates is proposed. The system adds transverse flexibility to the plasma column, so that any growing perturbation can be deformed to become anti-ballooning. Anti-ballooning form means reduced flute amplitude in bad-curvature regions and enhanced amplitude in expanders or other traditional stabilizers, so that energy of the perturbation becomes positive and the mode is suppressed. Detailed analysis shows that transverse flexibility (or tail-waving) of the discharge can be employed for feedback stabilization even without good-curvature regions. The only requirement is that the discharge inertia (field-weighted plasma density) and the pressure-weighted field curvature are differently distributed along the discharge. If based on inertia, the stabilization mechanism resembles the rope-walker act. Estimates show that the power cost of such stabilization is reasonable and scales inversely with the trap length.