ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
Y. Nakashima et al.
Fusion Science and Technology | Volume 59 | Number 1 | January 2011 | Pages 61-66
doi.org/10.13182/FST11-A11575
Articles are hosted by Taylor and Francis Online.
As the new research plan of Plasma Research Center of the University of Tsukuba, we are planning to start a study of divertor simulation under the closely resemble to actual fusion plasmas environment making an advantage of the GAMMA 10 tandem mirror and to contribute the solution for realizing the divertor in future toroidal systems. In the research plan, the concepts of two divertor devices are introduced. One has an axi-symmetric divertor configuration with separatrix (A-Div.) and the other is a high heat flux divertor simulator by using an end-mirror exit of the large tandem mirror device (E-Div.). Preparative experiments have been successfully started at the end-mirror region of GAMMA 10 and detailed behavior of end-loss particles has been investigated by using newly developed diagnostic instruments. In standard hot-ion mode plasmas (ne0 ~ 2 × 1018 m-3, Ti0 ~ 5 keV), the heat flux density of 0.8 MW/m2 and the particle flux density of 4 × 1022/sm2 were observed at 30 cm downstream of the end-mirror exit on the machine axis. It is confirmed that the heat flux density increases in proportion to the applied RF power. Superimposing the ECH pulse induces a remarkable enhancement of heat flux and a peak value in the net heat flux density of 8 MW/m2 was attained during the ECH injection, which almost comes up to the heat load level of the divertor plate of ITER. Two-dimensional visible image measurement of newly installed target plates using high-speed camera revealed a significant difference in the behavior of visible emission from plasma-material interaction. The above results give a clear prospect of generating the required performance and providing useful information for divertor studies in GAMMA 10.