ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
Playing the “bad guy” to enhance next-generation safety
Sometimes, cops and robbers is more than just a kid’s game. At the Department of Energy’s national laboratories, researchers are channeling their inner saboteurs to discover vulnerabilities in next-generation nuclear reactors, making sure that they’re as safe as possible before they’re even constructed.
A. A. Shoshin et al.
Fusion Science and Technology | Volume 59 | Number 1 | January 2011 | Pages 57-60
doi.org/10.13182/FST11-A11574
Articles are hosted by Taylor and Francis Online.
The paper presents experimental investigations of plasma-surface interaction and materials behavior under plasma loads relevant to type I ITER ELMs. The experiments were performed with quasi-stationary plasma accelerator QSPA Kh-50 and multi-mirror trap GOL-3 devices located in Kharkov (Ukraine) and Novosibirsk (Russia) respectively. QSPA generated repetitive plasma streams of duration 0.25 ms and the energy density up to 2.5 MJ/m2. In GOL-3 multi-mirror trap plasma was heated up to temperature of 2-4 keV by a high power relativistic electron beam. Energy density in the exhaust plasma stream vary from 0.5 to 30 MJ/m2. Surface patterns of the targets exposed by QSPA and GOL-3 plasma are analyzed. Cracking, development of tungsten surface morphology and droplets splashing are discussed. It is shown that under an applied energy density loads (>1 MJ/m2) the evolution of surface morphology due to plasma irradiation are similar for two devices in spite of the qualitative differences of particles energy of the impact plasma streams. Formation of three different crack networks with typical cell sizes of 1000, 10 and 0.3 m are identified after irradiation of tungsten surface. Experiments show that major cracks (cell size of 1000 m) are attributed to a ductile-to-brittle transition. The key role of heat loads magnitude on development of surface due to powerful plasma impacts is demonstrated.