ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
2024 ANS Winter Conference and Expo
November 17–21, 2024
Orlando, FL|Renaissance Orlando at SeaWorld
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
History in the making: D&D begins on Three Mile Island-2
Constellation Energy has announced that it will seek to restart Unit 1 of the Three Mile Island nuclear power plant in Pennsylvania as part of an agreement with Microsoft to power that company’s data centers. Given the growing interest by tech companies in using clean, reliable nuclear power to meet their growing energy demands, the September 20 announcement to reopen TMI-1, which was shut down and defueled in 2019, was not a huge surprise.
Thomas C. Simonen
Fusion Science and Technology | Volume 59 | Number 1 | January 2011 | Pages 36-38
doi.org/10.13182/FST11-A11569
Articles are hosted by Taylor and Francis Online.
The achievement of 60% beta and near classical confinement in the Russian Gas Dynamic Trap (GDT) provides a basis for extrapolating to a 2 MW neutron source with 2 MW m-2 of 14 MeV neutron flux over an area of ~1 m2. Such a source is needed for fusion materials development and qualification. We consider two axisymmetric configurations: a single mirror cell Deuterium-Tritium Dynamic-Trap Neutron Source (DTNS) and a Tandem-mirror Neutron Source (TNS). Compared to earlier US neutron source concepts, neither configuration utilizes complex minimum-B magnets or thermal barriers. In this paper we describe extrapolations from GDT with the same physical size, and the same dimensionless plasma parameters, but with higher magnetic field as well as higher neutral beam energy and power.