ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 8–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
November 2025
Fusion Science and Technology
Latest News
Nuclear News 40 Under 40—2025
Last year, we proudly launched the inaugural Nuclear News 40 Under 40 list to shine a spotlight on the exceptional young professionals driving the nuclear sector forward as the nuclear community faces a dramatic generational shift. We weren’t sure how a second list would go over, but once again, our members resoundingly answered the call, confirming what we already knew: The nuclear community is bursting with vision, talent, and extraordinary dedication.
J. K. Anderson et al.
Fusion Science and Technology | Volume 59 | Number 1 | January 2011 | Pages 27-30
doi.org/10.13182/FST11-A11567
Articles are hosted by Taylor and Francis Online.
A new 1 MW neutral beam injector (START-20F) is in operation on the Madison Symmetric Torus (MST) reversed field pinch. The beam, consisting of two arc discharge plasma generators, an optimized ion optical system and an integrated neutralizer/injector tank, operates at 25kV and up to 40A of neutrals for a 20 msec pulse (compared to a typical MST pulse length of 60 msec). The injected 1 MW of hydrogen neutrals (with approximately 85% in the full energy component) is significant compared to the 3-4 MW of ohmic input power in a typical target discharge. At this beam energy and a background electron density of about 1x1019 m-3 and temperature 1keV, roughly 90% of the injected power is deposited within the plasma. Initial experiments with the high power NBI show a large heating of the bulk ions: the fit of the width of energy spectrum as measured by Rutherford scattering (which is generally related to core ion temperature) quickly increases from 180eV to 230eV. This apparent significant and rapid heating of bulk ions is difficult to explain by classical collisions only, as modeling predicts 75% of the injected power is deposited on electrons and 15% on ions. The confinement of the fast ions (measured by the persistence in time of fusion neutrons due to a small fraction of deuterium in the beam fuel) is much greater than the canonical 1 msec confinement of particles and energy in the MST. The fast particle confinement is measured to increase with magnetic field strength. Further recent experiments document fast particle confinement time versus direction of injection (parallel or antiparallel to central magnetic field), beam energy, and background plasma properties.