ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
DOE’s latest fusion energy road map aims to bridge known gaps
The Department of Energy introduced a Fusion Science & Technology (S&T) Roadmap on October 16 as a national “Build–Innovate–Grow” strategy to develop and commercialize fusion energy by the mid-2030s by aligning public investment and private innovation. Hailed by Darío Gil, the DOE’s new undersecretary for science, as bringing “unprecedented coordination across America's fusion enterprise” and advancing President Trump’s January 2025 executive order, on “Unleashing American Energy,” the road map echoes plans issued by the DOE’s Office of Fusion Energy Sciences (FES) in 2023 and 2024, with a new emphasis on the convergence of AI and fusion.
The road map release coincided with other fusion energy events held this week in Washington, D.C., and beyond.
Kunioki Mima, T. Takeda, FIREX Project Group
Fusion Science and Technology | Volume 49 | Number 3 | April 2006 | Pages 358-366
Technical Paper | Fast Ignition | doi.org/10.13182/FST06-A1154
Articles are hosted by Taylor and Francis Online.
This paper introduces the next generation of fast ignition research facilities now under construction and describes in detail the Japanese project Fast Ignition Realization Experiment (FIREX-I) and its proposed follow-up, FIREX-II. Both the facilities and their scientific objectives are presented. FIREX-I and the other two facilities described in subsequent papers - OMEGA EP at the University of Rochester and the Z-Petawatt at Sandia National Laboratories - will conduct proof-of-principle experiments for the fast ignitor concept. The facilities consist of two components: a long-pulse ( > ns) driver capable of compressing and assembling the fusion fuel and a separate petawatt-class laser for heating. For the FIREX project, the present status of the construction of the 10-kJ-level, high-energy petawatt Laser for Fusion Experiment is reported, and the theoretical basis for high-density plasma heating with an ~10-kJ, 10-ps petawatt laser is discussed to show how this heating pulse is predicted to achieve the plasma parameters required for the fast ignition. The required petawatt spot size, the tolerable carbon fraction in the proposed D-T-loaded foam cryogenic target, appropriate heating laser pulse shape, and the required electron stopping range are explored. The theoretical analysis includes the use of Fokker-Planck simulation to describe the heating of the dense plasma by relativistic electrons created in the petawatt laser-plasma interactions. This modeling indicates that if 30% of the 10-kJ petawatt laser energy is coupled by relativistic electrons into D-T plasmas compressed to 100 to 200 g/cm3, the plasmas will be subsequently heated to 5 keV and fusion gains, defined as fusion energy produced divided by the total incident (compression and heating) laser energy, as high as 0.1 can result.