ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 8–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
November 2025
Fusion Science and Technology
Latest News
DOE seeks proposals for AI data centers at Paducah
The Department of Energy’s Office of Environmental Management has issued a request for offer (RFO) seeking proposals from U.S. companies to build and power AI data centers on the DOE’s Paducah Site in Kentucky. Companies are being sought to potentially enter into one or more long-term leasing agreements at the site that would be solely funded by the applicants.
W. Wang, T. B. Jones, D. R. Harding
Fusion Science and Technology | Volume 59 | Number 1 | January 2011 | Pages 240-249
Technical Paper | Nineteenth Target Fabrication Meeting | doi.org/10.13182/FST59-240
Articles are hosted by Taylor and Francis Online.
The double emulsion (DE) droplets used for fabrication of cryogenic foam targets for inertial confinement fusion experiments require precisely controlled volumes. On-chip electric field actuated microfluidic assembly of DE droplets can be used to achieve such precision. The electrowetting-on-dielectric and dielectrophoresis effects make it possible to manipulate both conductive and dielectric droplets simultaneously on a substrate. Aqueous and nonaqueous liquid droplets precisely dispensed from two reservoirs on a microfluidic chip are transported and combined to form oil-in-water-in-air or water-in-oil-in-air DE droplets. The dispensing reproducibility is studied as a function of a set of operation parameters. Conditions for spontaneous emulsification for DE formation are developed in terms of droplet surface energies.