ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
Frédéric Ben Saïd, Benoît Reneaume, Christophe Dauteuil, Olivier Breton, Ronan Botrel, Cédric Chicanne, Isabelle Geoffray, Rémy Collier, Olivier Legaie
Fusion Science and Technology | Volume 59 | Number 1 | January 2011 | Pages 234-239
Technical Paper | Nineteenth Target Fabrication Meeting | doi.org/10.13182/FST11-A11530
Articles are hosted by Taylor and Francis Online.
The High Power laser Energy Research facility (HiPER) is a European project dedicated to demonstrating the feasibility of producing energy by laser-driven inertial confinement fusion. A first design of the fast ignition cryogenic target has been established. It is composed of a thin-walled microshell with an inserted gold cone and filled with deuterium-tritium (DT) fuel by means of a capillary (conically guided capsule). After assembly, targets must be tight at cryogenic temperatures (16 to 19.6 K).In order to evaluate the manufacturing feasibility of a single-shot target prototype, a program has been adapted from the Laser Mégajoule (LMJ) cryogenic target fabrication know-how. Target component study for HiPER concerns a hollow gold cone (25-deg half-angle and [approximately]25-m thickness), a thin polymeric microshell (2-mm diameter and 3- to 10-m thickness), and a silica capillary (30-m outer diameter).First gas-tight targets at 77 K have been produced (helium gas leak rate [approximately]1.4 × 10-11 Pam3/s). Major efforts have been focused on thin-walled microshells, robust gold cone fabrication, and target assembly (minimizing of the glue quantity as well as helium gas leak tests) and will be discussed in this paper.