ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
High temperature fission chambers engineered for AMR/SMR safety and performance
As the global energy landscape shifts towards safer, smaller, and more flexible nuclear power, Small Modular Reactors (SMRs) and Gen. IV* technologies are at the forefront of innovation. These advanced designs pose new challenges in size, efficiency, and operating environment that traditional instrumentation and control solutions aren’t always designed to handle.
Géraldine Moll, Michel Martin, Rémy Collier
Fusion Science and Technology | Volume 59 | Number 1 | January 2011 | Pages 182-189
Technical Paper | Nineteenth Target Fabrication Meeting | doi.org/10.13182/FST59-182
Articles are hosted by Taylor and Francis Online.
We have determined the thermal criterion for the Laser Mégajoule cryogenic target that leads to a uniform layer of deuterium-tritium as specified for ignition. Thermal models were created, and computational fluid dynamics software was used to calculate this criterion in a spherical geometry as a function of capsule thermal conductivity. According to the values obtained, we have studied the possibility of removing anticonvection baffles in the cryogenic target. Results are presented in this paper and indicate that anticonvection baffles can be removed only if the gas density inside the cryogenic target is reduced and/or if the hydrogen content is reduced.