ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
February 2025
Fusion Science and Technology
Latest News
Neutron Vision at Los Alamos: Exploring the Frontiers of Nuclear Materials Science
In materials science, understanding the unseen—how materials behave internally under real-world conditions—has always been key to developing new materials and accelerating innovative technologies to market. Moreover, the tools that allow us to see into this invisible world of materials have often been game-changers. Among these, neutron imaging stands out as a uniquely powerful method for investigating the internal structure and behavior of materials without having to alter or destroy the sample. By harnessing the unique properties of neutrons, researchers can uncover the hidden behavior of materials, providing insights essential for advancing nuclear materials and technologies.
F. Lallet, C. Gauvin, M. Martin, G. Moll
Fusion Science and Technology | Volume 59 | Number 1 | January 2011 | Pages 171-181
Technical Paper | Nineteenth Target Fabrication Meeting | doi.org/10.13182/FST11-A11521
Articles are hosted by Taylor and Francis Online.
In this paper we present and discuss recent experimental and theoretical advances concerning the redistribution process, the control of target temperature, and the effect of deuterium-tritium (D-T) aging on the optimum laser shot temperature at the Laser Mégajoule (LMJ) facility.We introduce two analytical models to provide a better understanding of thermal target behavior. On one hand the first model describes the evolution of the D-T layer temperature, which cannot be recorded experimentally. On the other hand the second model highlights the necessity for the optimum laser shot temperature (i.e., 1.5 K below the triple point) to be adapted to the aging of the target.The analytical considerations are completed with experimental results obtained with D2 taken as a reference system to investigate the properties of D-T in LMJ targets.