ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
Empowering the next generation: ANS’s newest book focuses on careers in nuclear energy
A new career guide for the nuclear energy industry is now available: The Nuclear Empowered Workforce by Earnestine Johnson. Drawing on more than 30 years of experience across 16 nuclear facilities, Johnson offers a practical, insightful look into some of the many career paths available in commercial nuclear power. To mark the release, Johnson sat down with Nuclear News for a wide-ranging conversation about her career, her motivation for writing the book, and her advice for the next generation of nuclear professionals.
When Johnson began her career at engineering services company Stone & Webster, she entered a field still reeling from the effects of the Three Mile Island incident in 1979, nearly 15 years earlier. Her hiring cohort was the first group of new engineering graduates the company had brought on since TMI, a reflection of the industry-wide pause in nuclear construction. Her first long-term assignment—at the Millstone site in Waterford, Conn., helping resolve design issues stemming from TMI—marked the beginning of a long and varied career that spanned positions across the country.
J. Manzagol, G. Paquignon, D. Brisset, P. Bonnay, E. Bouleau, D. Chatain, M. Chichoux, D. Communal, V. Lamaison, J. P. Perin
Fusion Science and Technology | Volume 59 | Number 1 | January 2011 | Pages 159-165
Technical Paper | Nineteenth Target Fabrication Meeting | doi.org/10.13182/FST11-A11519
Articles are hosted by Taylor and Francis Online.
The Laser Mégajoule (LMJ) cryogenic target is protected from ambient thermal radiation by a thermal shroud. When the cryotarget, held by the cryotarget positioner, is at the LMJ chamber center, the thermal shroud has to be removed just before the shot to allow the laser beams to reach the laser entrance hole of the cavity.The shroud remover, PET, will have to disconnect the thermal shroud from the cryogenic target base without disturbing the target base temperature regulation ([approximately]18 K ± 2 mK), which guarantees the needed cryogenic target conditions to reach the ignition.The shroud withdrawal is divided into two successive phases: a slow withdrawal for the thermal disconnection between shroud and target base and a fast withdrawal for a quick extraction of the shroud out of the laser beamways pointing onto the cavity. The slow shroud withdrawal must be handled within 30 min to respect laser pointing stability. After the final target alignment at the chamber center, the shroud must be ejected 0.5 m away from the source point in <0.1 s before the shot.To cope with all these issues, a prototype of the shroud remover, PPET, has been first built and developed at CEA-Grenoble, at INAC/SBT, before being tested at CEA-CESTA on the DEMOCRYTE setup, a prototype of the cryogenic target charger and holder.The experimental results mainly obtained at CEA-CESTA in 2008 and 2009 on two generations of target bases and shrouds are presented in this paper.