ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
G. Paquignon, D. Brisset, J. Manzagol
Fusion Science and Technology | Volume 59 | Number 1 | January 2011 | Pages 155-158
Technical Paper | Nineteenth Target Fabrication Meeting | doi.org/10.13182/FST11-A11518
Articles are hosted by Taylor and Francis Online.
The Laser Mégajoule cryotarget positioner, PCC, will be used to set cryogenic targets in appropriate conditions for the laser shot in order to reach ignition. These conditions can be summarized as a few parameters of the deuterium-tritium (DT) solid layer: sphericity, roughness, and density of DT gas. The DT mixture is confined and held in a target assembly that is handled and cooled by the PCC. Thus, the parameters of the DT solid layer are controlled by the PCC. In particular, roughness depends on the control of the target base temperature (±1 mK), on the temperature slope while crossing the DT triple point (0.5 mK/min), and on the thermodynamic way followed to reach gas density conditions expected at the laser shot [slow cooling (0.5 mK/min), quenching (several kelvins per second), or rapid cooling (several kelvins per minute)]. Moreover, the required gas density needs high cryogenic power performances of the PCC to be fulfilled. As the target is gripped at cryogenic temperature by the PCC, thermal contact resistance added to power load problems must be faced.We have investigated all these cryogenic challenges on DEMOCRYTE, the prototype of the cryogenic holder setup. Experimental results obtained between 2006 and 2009 are described in this paper.