ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
G. Paquignon, D. Brisset, J. Manzagol
Fusion Science and Technology | Volume 59 | Number 1 | January 2011 | Pages 155-158
Technical Paper | Nineteenth Target Fabrication Meeting | doi.org/10.13182/FST11-A11518
Articles are hosted by Taylor and Francis Online.
The Laser Mégajoule cryotarget positioner, PCC, will be used to set cryogenic targets in appropriate conditions for the laser shot in order to reach ignition. These conditions can be summarized as a few parameters of the deuterium-tritium (DT) solid layer: sphericity, roughness, and density of DT gas. The DT mixture is confined and held in a target assembly that is handled and cooled by the PCC. Thus, the parameters of the DT solid layer are controlled by the PCC. In particular, roughness depends on the control of the target base temperature (±1 mK), on the temperature slope while crossing the DT triple point (0.5 mK/min), and on the thermodynamic way followed to reach gas density conditions expected at the laser shot [slow cooling (0.5 mK/min), quenching (several kelvins per second), or rapid cooling (several kelvins per minute)]. Moreover, the required gas density needs high cryogenic power performances of the PCC to be fulfilled. As the target is gripped at cryogenic temperature by the PCC, thermal contact resistance added to power load problems must be faced.We have investigated all these cryogenic challenges on DEMOCRYTE, the prototype of the cryogenic holder setup. Experimental results obtained between 2006 and 2009 are described in this paper.