ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Two updated standards on criticality safety published
The American National Standards Institute (ANSI) recently approved two new American Nuclear Society standards covering different aspects of nuclear criticality safety (NCS).
B. Reneaume, G. Allegre, R. Botrel, H. Bourcier, R. Bourdenet, O. Breton, R. Collier, C. Dauteuil, F. Durut, A. Faivre, E. Fleury, I. Geoffray, G. Geoffray, L. Jeannot, L. Jehanno, O. Legaie, G. Legay, S. Meux, G. Paquignon, J. P. Perin, J. Schunk, M. Theobald, C. Vasselin, F. Viargues
Fusion Science and Technology | Volume 59 | Number 1 | January 2011 | Pages 148-154
Technical Paper | Nineteenth Target Fabrication Meeting | doi.org/10.13182/FST11-A11517
Articles are hosted by Taylor and Francis Online.
The cryogenic target assemblies (CTAs) designed for Laser Mégajoule (LMJ) experiments have many functions and have to meet severe specifications imposed by implosion physics, the CTA thermal environment, and the CTA interfaces with the Mégajoule laser cryogenic target positioner. Therefore, CTA fabrication uses many challenging materials and requires several technological studies. During the last 2 years, many developments have enabled better collection of comprehensive data on target constitutive materials and improvements in the fabrication of the CTA base, hohlraum, and aluminum turret.Studies have been carried out (a) to better characterize thermal properties of materials allowing optimization of the thermal simulation of the hohlraum, (b) to improve the CTA base fabrication process in order to optimize thermal studies of the LMJ experimental filling station (EFS), and (c) to determine coatings on the polyimide membrane that may limit the 300 K thermal effect on the microshell and increase the deuterium-tritium fuel lifetime.CTAs have been produced to evaluate fabrication knowledge, to characterize CTAs, to study air tightness, and to study filling and D2 ice layering on the EFS.An overview of the results that have been obtained during the past 2 years is presented in this paper.