ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
Playing the “bad guy” to enhance next-generation safety
Sometimes, cops and robbers is more than just a kid’s game. At the Department of Energy’s national laboratories, researchers are channeling their inner saboteurs to discover vulnerabilities in next-generation nuclear reactors, making sure that they’re as safe as possible before they’re even constructed.
J. Nazon, E. Brun, F. Durut, M. Theobald, O. Legaie
Fusion Science and Technology | Volume 59 | Number 1 | January 2011 | Pages 139-147
Technical Paper | Nineteenth Target Fabrication Meeting | doi.org/10.13182/FST11-A11516
Articles are hosted by Taylor and Francis Online.
In order to decrease the wall absorption of hohlraums during the laser-matter interaction encountered in X-ray indirect-drive inertial confinement fusion, a thick layer of depleted uranium (DU) and gold alloy can be deposited on the inner surface of the hohlraums. Such a coating can be achieved by sputtering simultaneously DU and gold directly into the hohlraums. This technique is called "moulding PVD." In order to validate the moulding PVD technique, Au/Mo cocktail layers were deposited on glass substrates by simultaneous multitarget sputtering. Molybdenum is used for deposition of cocktail alloys since it shows the same sputtering yields as uranium. Au/Mo cocktail layers can be easily grown on glass substrates at any desired composition and controlled thickness by optimizing the deposition parameters. A major issue of DU deposition is its rapid delamination in contact with water, air, or hydrogen. To protect the DU/Au alloy, a thin coating of dense gold is sputtered on the DU alloy. Dense and low-stress gold thin films deposited on glass substrates have been achieved by optimization of processing parameters. The effect of such a coating has been quantified thanks to the study of praseodymium oxidation (which is more sensitive to delamination than DU). A gold coating thickness of 0.2 m thoroughly decreases the oxidation rate of praseodymium in contact with air.