ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Webinar: MC&A and safety in advanced reactors in focus
Towell
Russell
Prasad
The American Nuclear Society’s Nuclear Nonproliferation Policy Division recently hosted a webinar on updating material control and accounting (MC&A) and security regulations for the evolving field of advanced reactors.
Moderator Shikha Prasad (CEO, Srijan LLC) was joined by two presenters, John Russell and Lester Towell, who looked at how regulations that were historically developed for traditional light water reactors will apply to the next generation of nuclear technology and what changes need to be made.
S. Le Tacon, C. Chicanne, M. Theobald, O. Legaie
Fusion Science and Technology | Volume 59 | Number 1 | January 2011 | Pages 99-104
Technical Paper | Nineteenth Target Fabrication Meeting | doi.org/10.13182/FST11-A11509
Articles are hosted by Taylor and Francis Online.
Glass shells made from the pyrolysis of silicon-doped glow discharge polymers (Si-GDP) are particularly interesting for many noncryogenic target applications. We investigated the possibility of developing millimeter glass shells with >10-m-thick walls to achieve a half-life of several months. Although previous studies have already demonstrated their feasibility, important developments are still needed to finely understand the role each step plays on the final glass shell's properties. The adjustment of plasma deposition parameters and pyrolysis conditions allowed us to control shell shrinkage and defect formation. In the case of 7.4 at. % Si-GDP slowly pyrolyzed, we obtained spherical and smooth glass shells with near 100% yield. We also demonstrated that adjusting sintering temperature can produce fully dense glass shells from 2.2 to 2.4 g/cm3 . Finally, deuterium pressurized capsules >3 MPa with a half-life of 8 months are obtained.