ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Two updated standards on criticality safety published
The American National Standards Institute (ANSI) recently approved two new American Nuclear Society standards covering different aspects of nuclear criticality safety (NCS).
S. Le Tacon, C. Chicanne, M. Theobald, O. Legaie
Fusion Science and Technology | Volume 59 | Number 1 | January 2011 | Pages 99-104
Technical Paper | Nineteenth Target Fabrication Meeting | doi.org/10.13182/FST11-A11509
Articles are hosted by Taylor and Francis Online.
Glass shells made from the pyrolysis of silicon-doped glow discharge polymers (Si-GDP) are particularly interesting for many noncryogenic target applications. We investigated the possibility of developing millimeter glass shells with >10-m-thick walls to achieve a half-life of several months. Although previous studies have already demonstrated their feasibility, important developments are still needed to finely understand the role each step plays on the final glass shell's properties. The adjustment of plasma deposition parameters and pyrolysis conditions allowed us to control shell shrinkage and defect formation. In the case of 7.4 at. % Si-GDP slowly pyrolyzed, we obtained spherical and smooth glass shells with near 100% yield. We also demonstrated that adjusting sintering temperature can produce fully dense glass shells from 2.2 to 2.4 g/cm3 . Finally, deuterium pressurized capsules >3 MPa with a half-life of 8 months are obtained.