ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
U.S. and Kazakhstan launch initiatives to facilitate SMR deployment
The United States Embassy and Consulate in Kazakhstan announced in December that the two countries are expanding their partnership in civil nuclear energy with a new educational initiative about small modular reactors.
E. T. Alger, J. Kroll, E. G. Dzenitis, R. Montesanti, J. Hughes, M. Swisher, J. Taylor, K. Segraves, D. M. Lord, J. Reynolds, C. Castro, G. Edwards
Fusion Science and Technology | Volume 59 | Number 1 | January 2011 | Pages 78-86
Technical Paper | Nineteenth Target Fabrication Meeting | doi.org/10.13182/FST10-3708
Articles are hosted by Taylor and Francis Online.
Inertial confinement fusion (ICF) experiments at the National Ignition Facility (NIF) require cryogenic targets at the 1-cm scale to be fabricated, assembled, and metrologized to micron-level tolerances. During assembly of these ICF targets, there are physical dimension metrology steps to be made of the components, subassemblies, and completed targets. Metrology is primarily completed using optical coordinate measurement machines that provide repeatable measurements with micron precision, while also allowing in-process data collection for absolute accuracy in assembly. To date, 51 targets have been assembled and metrologized, and 34 targets have been successfully fielded on NIF relying on these metrology data. In the near future, ignition experiments on NIF will require tighter tolerances and more demanding target assembly and metrology capability.Metrology methods, calculations, and uncertainty estimates will be discussed. Target diagnostic port alignment, target position, and capsule location results will be reviewed for the 2009 Energetics Campaign. The information is presented via control charts showing the effect of process improvements that were made during target production. Certain parameters, including capsule position, met the 2009 campaign specifications but will have much tighter requirements in the future. To meet these new requirements assembly process changes and metrology capability upgrades will be necessary.