ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
Playing the “bad guy” to enhance next-generation safety
Sometimes, cops and robbers is more than just a kid’s game. At the Department of Energy’s national laboratories, researchers are channeling their inner saboteurs to discover vulnerabilities in next-generation nuclear reactors, making sure that they’re as safe as possible before they’re even constructed.
Y. Sentoku, W. Kruer, M. Matsuoka, A. Pukhov
Fusion Science and Technology | Volume 49 | Number 3 | April 2006 | Pages 278-296
Technical Paper | Fast Ignition | doi.org/10.13182/FST06-A1149
Articles are hosted by Taylor and Francis Online.
In the fast ignition scheme, the compressed core is surrounded by a 1-mm-scale coronal plasma. The critical density where the laser deposits energy is still more than 100 m away from the core. The distance is much longer than the laser focus radius or the core size. This situation raises an important question: How can we couple laser energy to the core from such a distance? One of the techniques that has been proposed to overcome this problem is hole boring by the ponderomotive pressure of the incident laser light. In this paper, the physics related to the laser hole boring, including the parametric instabilities, the channel formation, and the hot electron acceleration by ultraintense laser light, are discussed. The maximum density where the laser can propagate by hole boring is obtained as a function of the intensity. This agrees well with experimental observations, and it is confirmed by numerical simulations. The acceleration mechanism of hot electrons in the magnetic channel is also identified. The hot electrons are characterized by the numerical simulations. In summary, the critical issue of energy coupling in this scheme is raised and discussed.