ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
NRC approves V.C. Summer’s second license renewal
Dominion Energy’s V.C. Summer nuclear power plant, in Jenkinsville, S.C., has been authorized to operate for 80 years, until August 2062, following the renewal of its operating license by the Nuclear Regulatory Commission for a second time.
A. De Groof, S. Poedts
Fusion Science and Technology | Volume 49 | Number 2 | February 2006 | Pages 477-488
Technical Paper | Plasma and Fusion Energy Physics - Special Topic | doi.org/10.13182/FST06-A1146
Articles are hosted by Taylor and Francis Online.
Simulations of Coronal Mass Ejections (CMEs) evolving in the interplanetary (IP) space from the Sun up to 1 AU are performed in the framework of ideal magnetohydrodynamics (MHD). The aim is to quantify the effect of the background solar wind and of the CME initiation parameters on the evolution and on the geo-effectiveness of CMEs. The shocks and magnetic clouds related to fast CMEs in the solar corona and interplanetary space play a crucial role in the study of space weather. Better predictions of space weather events require a deeper insight in the physics behind them. Different solar wind models are considered in combination with different CME initiation models: magnetic foot point shearing and magnetic flux emergence. The simulations show that the initial magnetic polarity substantially affects the IP evolution of the CMEs influencing the propagation velocity, the shape, the trajectory (and, thus, the geo-effectiveness).