ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
The RAIN scale: A good intention that falls short
Radiation protection specialists agree that clear communication of radiation risks remains a vexing challenge that cannot be solved solely by finding new ways to convey technical information.
Earlier this year, an article in Nuclear News described a new radiation risk communication tool, known as the Radiation Index, or, RAIN (“Let it RAIN: A new approach to radiation communication,” NN, Jan. 2025, p. 36). The authors of the article created the RAIN scale to improve radiation risk communication to the general public who are not well-versed in important aspects of radiation exposures, including radiation dose quantities, units, and values; associated health consequences; and the benefits derived from radiation exposures.
R. C. Wolf
Fusion Science and Technology | Volume 49 | Number 2 | February 2006 | Pages 441-454
Technical Paper | Plasma and Fusion Energy Physics - Fusion Reactor Issues | doi.org/10.13182/FST06-A1143
Articles are hosted by Taylor and Francis Online.
Based on the fusion reaction between the nuclei of the hydrogen isotopes deuterium and tritium magnetic confinement fusion research aims to develop an electricity producing power plant. The principal concept is to confine a plasma, consisting of these nuclei and their electrons, in a magnetic field configuration in such a way that the thermal plasma can reach temperatures and densities at which sufficient fusion reactions take place to achieve a positive energy balance. The products of the fusion reactions are helium nuclei or -particles and neutrons. The first, also bound to the magnetic field lines, are supposed to transfer their energy to the thermal plasma and thus sustain the fusion reaction. The latter, because they are not confined by the magnetic field, can leave the plasma directly and are used to breed tritium from lithium and convert the fusion energy into heat.