ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
2021 Student Conference
April 8–10, 2021
Virtual Meeting
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2021
Jul 2020
Latest Journal Issues
Nuclear Science and Engineering
March 2021
Nuclear Technology
February 2021
Fusion Science and Technology
January 2021
Latest News
Researchers report fastest purification of astatine-211 needed for targeted cancer therapy
Astatine-211 recovery from bismuth metal using a chromatography system. Unlike bismuth, astatine-211 forms chemical bonds with ketones.
In a recent study, Texas A&M University researchers have described a new process to purify astatine-211, a promising radioactive isotope for targeted cancer treatment. Unlike other elaborate purification methods, their technique can extract astatine-211 from bismuth in minutes rather than hours, which can greatly reduce the time between production and delivery to the patient.
“Astatine-211 is currently under evaluation as a cancer therapeutic in clinical trials. But the problem is that the supply chain for this element is very limited because only a few places worldwide can make it,” said Jonathan Burns, research scientist in the Texas A&M Engineering Experiment Station’s Nuclear Engineering and Science Center. “Texas A&M University is one of a handful of places in the world that can make astatine-211, and we have delineated a rapid astatine-211 separation process that increases the usable quantity of this isotope for research and therapeutic purposes.”
The researchers added that this separation method will bring Texas A&M one step closer to being able to provide astatine-211 for distribution through the Department of Energy’s Isotope Program’s National Isotope Development Center as part of the University Isotope Network.
Details on the chemical reaction to purify astatine-211 are in the journal Separation and Purification Technology.
A. J. H. Donné, C. J. Barth
Fusion Science and Technology | Volume 49 | Number 2 | February 2006 | Pages 375-386
Technical Paper | Plasma and Fusion Energy Physics - Diagnostics | dx.doi.org/10.13182/FST06-A1137
Articles are hosted by Taylor and Francis Online.
This paper will focus on two types of laser-aided diagnostics: Thomson scattering and laser-induced fluorescence. Thomson scattering is a very powerful diagnostic, which is applied at nearly every magnetic confinement device. Depending on the experimental conditions different plasma parameters can be diagnosed. When the wavelength is much smaller than the plasma Debye length, the total scattered power is obtained by an incoherent summation over the scattered powers of the individual electrons. The scattering spectrum in this case is a reflection of the electron velocity distribution, from which local values for the electron temperature and density can be derived. In case the wavelength is larger than the Debye length, Thomson scattering can yield information on the ion velocity distribution and/or collective behavior of the electrons, as is the case with density fluctuations. Laser-induced fluorescence is particularly suited for studies of the ion population at the cooler, not-fully ionized, plasma edge.