ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
Hash Hashemian: Visionary leadership
As Dr. Hashem M. “Hash” Hashemian prepares to step into his term as President of the American Nuclear Society, he is clear that he wants to make the most of this unique moment.
A groundswell in public approval of nuclear is finding a home in growing governmental support that is backed by a tailwind of technological innovation. “Now is a good time to be in nuclear,” Hashemian said, as he explained the criticality of this moment and what he hoped to accomplish as president.
R. Keppens, J. W. S. Blokland
Fusion Science and Technology | Volume 49 | Number 2 | February 2006 | Pages 131-138
Technical Paper | Plasma and Fusion Energy Physics - Equilibrium and Instabilities | doi.org/10.13182/FST06-A1112
Articles are hosted by Taylor and Francis Online.
Nuclear fusion research promises to harvest the excess energy carried by energetic neutrons when Deuterium and Tritium hydrogen isotopes are fused together to form -particles. Pressure and density conditions needed for these fusion reactions ensure that these charged constituents, together with the free electrons, form a fully ionized plasma at temperatures of about 100 million Kelvin. Any contact with material walls would instantaneously cool the plasma and must be avoided. In the axisymmetric toroidal vessel of a tokamak, a hot plasma is confined primarily by magnetic Lorentz forces. Strong helical magnetic fields that trace out nested toroidal surfaces help to thermally insulate the plasma from the walls and support it against its own pressure gradient. To lowest order, a fluid model of the equilibrium considers only this force balance in the poloidal cross-section of the tokamak, as expressed analytically by the Grad-Shafranov equation.