ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
Playing the “bad guy” to enhance next-generation safety
Sometimes, cops and robbers is more than just a kid’s game. At the Department of Energy’s national laboratories, researchers are channeling their inner saboteurs to discover vulnerabilities in next-generation nuclear reactors, making sure that they’re as safe as possible before they’re even constructed.
R. Keppens, J. W. S. Blokland
Fusion Science and Technology | Volume 49 | Number 2 | February 2006 | Pages 131-138
Technical Paper | Plasma and Fusion Energy Physics - Equilibrium and Instabilities | doi.org/10.13182/FST06-A1112
Articles are hosted by Taylor and Francis Online.
Nuclear fusion research promises to harvest the excess energy carried by energetic neutrons when Deuterium and Tritium hydrogen isotopes are fused together to form -particles. Pressure and density conditions needed for these fusion reactions ensure that these charged constituents, together with the free electrons, form a fully ionized plasma at temperatures of about 100 million Kelvin. Any contact with material walls would instantaneously cool the plasma and must be avoided. In the axisymmetric toroidal vessel of a tokamak, a hot plasma is confined primarily by magnetic Lorentz forces. Strong helical magnetic fields that trace out nested toroidal surfaces help to thermally insulate the plasma from the walls and support it against its own pressure gradient. To lowest order, a fluid model of the equilibrium considers only this force balance in the poloidal cross-section of the tokamak, as expressed analytically by the Grad-Shafranov equation.