ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
R. Keppens, J. W. S. Blokland
Fusion Science and Technology | Volume 49 | Number 2 | February 2006 | Pages 131-138
Technical Paper | Plasma and Fusion Energy Physics - Equilibrium and Instabilities | doi.org/10.13182/FST06-A1112
Articles are hosted by Taylor and Francis Online.
Nuclear fusion research promises to harvest the excess energy carried by energetic neutrons when Deuterium and Tritium hydrogen isotopes are fused together to form -particles. Pressure and density conditions needed for these fusion reactions ensure that these charged constituents, together with the free electrons, form a fully ionized plasma at temperatures of about 100 million Kelvin. Any contact with material walls would instantaneously cool the plasma and must be avoided. In the axisymmetric toroidal vessel of a tokamak, a hot plasma is confined primarily by magnetic Lorentz forces. Strong helical magnetic fields that trace out nested toroidal surfaces help to thermally insulate the plasma from the walls and support it against its own pressure gradient. To lowest order, a fluid model of the equilibrium considers only this force balance in the poloidal cross-section of the tokamak, as expressed analytically by the Grad-Shafranov equation.