ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
IAEA to help monitor plastic pollution in the Galapagos Islands
The International Atomic Energy Agency announced that its Nuclear Technology for Controlling Plastic Pollution (NUTEC Plastics) initiative has partnered with Ecuador’s Oceanographic Institute of the Navy (INOCAR) and Polytechnic School of the Coast (ESPOL) to build microplastic monitoring and analytical capacity to address the growing threat of marine microplastic pollution in the Galapagos Islands.
Ronald D. Stambaugh, Vincent S. Chan, Robert L. Miller, Michael J. Schaffer
Fusion Science and Technology | Volume 33 | Number 1 | January 1998 | Pages 1-21
Technical Paper | doi.org/10.13182/FST33-1
Articles are hosted by Taylor and Francis Online.
The low-aspect-ratio tokamak or spherical torus (ST) approach offers the two key elements needed to enable magnetic confinement fusion to make the transition from a government-funded research program to the commercial marketplace: a low-cost, low-power, small-size market entry vehicle and a strong economy of scale in larger devices. Within the ST concept, a very small device (A = 1.4, major radius ~1 m, similar size to the DIII-D tokamak) could be built that would produce ~800 MW(thermal), 200 MW(net electric) and would have a gain, defined as QPLANT = (gross electric power/recirculating power), of ~2. Such a device would have all the operating systems and features of a power plant and would therefore be acceptable as a pilot plant, even though the cost of electricity would not be competitive. The ratio of fusion power to copper toroidal field (TF) coil dissipation rises quickly with device size (like R3 to R4, depending on what is held constant) and can lead to 4-GW(thermal) power plants with QPLANT = 4 to 5 but which remain a factor of 3 smaller than superconducting tokamak power plants. Large ST power plants might be able to burn the advanced fuel D-He3 if the copper TF coil is replaced by a superconducting TF coil and suitable shield. These elements of a commercialization strategy are of particular importance to the U.S. fusion program in which any initial nongovernment financial participation demands a low-cost entry vehicle.The ability to pursue this line of fusion development requires certain advances and demonstrations that are probable. Stability calculations support a specific advantage of low aspect ratio in high beta that would allow simultaneously T ~ 60% and 90% bootstrap current fraction (Ip ~ 15 MA, = 3). Steady-state current drive requirements are then manageable. The high beta capability means the fusion power density can be so high that neutron wall loading at the blanket, rather than plasma physics, becomes the critical design restriction.