ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
Ronald D. Stambaugh, Vincent S. Chan, Robert L. Miller, Michael J. Schaffer
Fusion Science and Technology | Volume 33 | Number 1 | January 1998 | Pages 1-21
Technical Paper | doi.org/10.13182/FST33-1
Articles are hosted by Taylor and Francis Online.
The low-aspect-ratio tokamak or spherical torus (ST) approach offers the two key elements needed to enable magnetic confinement fusion to make the transition from a government-funded research program to the commercial marketplace: a low-cost, low-power, small-size market entry vehicle and a strong economy of scale in larger devices. Within the ST concept, a very small device (A = 1.4, major radius ~1 m, similar size to the DIII-D tokamak) could be built that would produce ~800 MW(thermal), 200 MW(net electric) and would have a gain, defined as QPLANT = (gross electric power/recirculating power), of ~2. Such a device would have all the operating systems and features of a power plant and would therefore be acceptable as a pilot plant, even though the cost of electricity would not be competitive. The ratio of fusion power to copper toroidal field (TF) coil dissipation rises quickly with device size (like R3 to R4, depending on what is held constant) and can lead to 4-GW(thermal) power plants with QPLANT = 4 to 5 but which remain a factor of 3 smaller than superconducting tokamak power plants. Large ST power plants might be able to burn the advanced fuel D-He3 if the copper TF coil is replaced by a superconducting TF coil and suitable shield. These elements of a commercialization strategy are of particular importance to the U.S. fusion program in which any initial nongovernment financial participation demands a low-cost entry vehicle.The ability to pursue this line of fusion development requires certain advances and demonstrations that are probable. Stability calculations support a specific advantage of low aspect ratio in high beta that would allow simultaneously T ~ 60% and 90% bootstrap current fraction (Ip ~ 15 MA, = 3). Steady-state current drive requirements are then manageable. The high beta capability means the fusion power density can be so high that neutron wall loading at the blanket, rather than plasma physics, becomes the critical design restriction.