ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
Y. Miura, M. Mori, T. Shoji, H. Matsumoto, K. Kamiya, K. Ida, S. Kasai
Fusion Science and Technology | Volume 49 | Number 2 | February 2006 | Pages 96-121
Technical Paper | JFT-2M Tokamak | doi.org/10.13182/FST06-A1090
Articles are hosted by Taylor and Francis Online.
The flexible mid-sized machine of JFT-2M has contributed to the understanding of the physics of improved confinement and the control of improved discharges using some innovative techniques. The improved confinement modes achieved during additional heating on JFT-2M were H-mode in both divertor and limiter configurations, improved L-mode, counter-neutral-beam injection, and pellet-injected H-mode. These improved modes are characterized by two improvements: (a) H-mode that has sharp density and temperature gradients at the edge and (b) other modes that have peaked density, temperature, and toroidal rotation profiles near the center. The improvement of pellet-injected H-mode achieved by central fueling was a combination of H-mode and core improvement with peaked profiles. The discovery of limiter H-mode had an impact on the physics understanding of H-mode and showed the formation of a transport barrier at a place without discontinuity of the magnetic field line topology. The appearance of edge-localized modes (ELMs) by applying ergodic fields was investigated, and it was clarified that n 4 helical components were effective in producing ELMs. Scrape-off-layer biasing had the effect of compressing neutrals at the divertor region. It would be understood that compressed neutrals at the divertor region might increase banana ion loss through charge exchange and increase the negative radial electric field inside the separatrix. This situation would reduce the H-mode power threshold. High-recycling-steady (HRS) H-mode could be reproducibly obtained by boronization using tri-methyl-boron. It was found that HRS appears at a pedestal collisionality of e* > 1.