ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
Y. Miura, M. Mori, T. Shoji, H. Matsumoto, K. Kamiya, K. Ida, S. Kasai
Fusion Science and Technology | Volume 49 | Number 2 | February 2006 | Pages 96-121
Technical Paper | JFT-2M Tokamak | doi.org/10.13182/FST06-A1090
Articles are hosted by Taylor and Francis Online.
The flexible mid-sized machine of JFT-2M has contributed to the understanding of the physics of improved confinement and the control of improved discharges using some innovative techniques. The improved confinement modes achieved during additional heating on JFT-2M were H-mode in both divertor and limiter configurations, improved L-mode, counter-neutral-beam injection, and pellet-injected H-mode. These improved modes are characterized by two improvements: (a) H-mode that has sharp density and temperature gradients at the edge and (b) other modes that have peaked density, temperature, and toroidal rotation profiles near the center. The improvement of pellet-injected H-mode achieved by central fueling was a combination of H-mode and core improvement with peaked profiles. The discovery of limiter H-mode had an impact on the physics understanding of H-mode and showed the formation of a transport barrier at a place without discontinuity of the magnetic field line topology. The appearance of edge-localized modes (ELMs) by applying ergodic fields was investigated, and it was clarified that n 4 helical components were effective in producing ELMs. Scrape-off-layer biasing had the effect of compressing neutrals at the divertor region. It would be understood that compressed neutrals at the divertor region might increase banana ion loss through charge exchange and increase the negative radial electric field inside the separatrix. This situation would reduce the H-mode power threshold. High-recycling-steady (HRS) H-mode could be reproducibly obtained by boronization using tri-methyl-boron. It was found that HRS appears at a pedestal collisionality of e* > 1.