ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
DOE issues new NEPA rule and procedures—and accelerates DOME reactor testing
Meeting a deadline set in President Trump’s May 23 executive order “Reforming Nuclear Reactor Testing at the Department of Energy,” the DOE on June 30 updated information on its National Environmental Policy Act (NEPA) rulemaking and implementation procedures and published on its website an interim final rule that rescinds existing regulations alongside new implementing procedures.
Andrea Murari, Guido Vagliasindi, Sebastiano De Fiore, Eleonora Arena, Paolo Arena, Luigi Fortuna, Y. Andrew, M. Johnson, JET-EFDA Contributors
Fusion Science and Technology | Volume 58 | Number 2 | October 2010 | Pages 695-705
Selected Paper from the Sixth Fusion Data Validation Workshop 2010 (Part 1) | doi.org/10.13182/FST10-A10894
Articles are hosted by Taylor and Francis Online.
Dynamical systems are often considered immune from memory effects, i.e., the dependence of their time evolution on the previous history. This assumption has been tested for two phenomena in nuclear fusion that are believed to sometimes show sensitivity to the previous history of the discharge: disruptions and the transition from the L mode to the H mode of confinement. To this end, two neural network architectures, tapped delay lines and recurrent networks of the Elman type, have been applied to the Joint European Torus (JET) database to extract these potential memory effects from the time series of the available signals. Both architectures can detect the dependence on the previous evolution quite effectively. In the case of disruptions, only the ones triggered by locked modes seem to be influenced by the previous history of the discharge. With regard to the L-H transition, memory effects are present only in the time interval very close to the transition, whereas once the plasma has settled down in one of the two regimes, no evidence of dependence on the previous evolution has been detected.