A major challenge in nuclear fusion research is the coherent combination of measurements from heterogeneous diagnostics. Different measurement techniques for measuring the same subset of physical parameters provide complementary and redundant data for, e.g., improving the reliability of physical parameters, increasing the spatial and temporal resolution of profiles, and resolving data inconsistencies.

The concept of integrated data analysis within the framework of Bayesian probability theory was applied to the combined analysis of lithium beam emission spectroscopy (LIB), deuterium cyanide laser interferometry, electron cyclotron emission (ECE), and Thomson scattering spectroscopy. The four heterogeneous diagnostics enable the simultaneous estimation of electron density and temperature profiles with high spatial and temporal resolution. The coherent analysis of the profile diagnostics allows one to consider diagnostic interdependencies correlating density and temperature profiles, e.g., ECE shine-through, and diagnostics alignment. The benefits of a combined analysis of diagnostics will be shown in a modular way by successively increasing the set of diagnostics starting with the LIB diagnostics.