ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
L. A. Bernstein, A. N. Perevezentsev, L. A. Rivkis, A. A. Semenov, B. V. Safronov, A. P. Chukanov, E. V. Polianczyk, G. B. Manelis, S. V. Glazov, I. A. Revelsky, E. S. Brodsky, E. N. Kapinus
Fusion Science and Technology | Volume 58 | Number 2 | October 2010 | Pages 625-657
Technical Paper | doi.org/10.13182/FST10-A10889
Articles are hosted by Taylor and Francis Online.
Maintenance of the Joint European Torus (JET) reactor led to generation of soft housekeeping materials contaminated with tritium and comprising various polymeric materials. Some of the wastes fall into the category of intermediate-level waste and require processing to reduce the volume and/or change the category to low-level waste. Plasma arc centrifuge (PAC) combustion and countercurrent regime of gasification have been studied as candidates for a future waste treatment facility for JET tritium-contaminated wastes. This study was carried out for JET wastes that did not contain tritium. Mass reduction factors from 8 to 46 and from 35 to 143 for countercurrent regime of gasification and PAC combustion, respectively, have been demonstrated to be dependent on waste composition. Volume reduction factors from 20 to 100 and from 95 to 400 for countercurrent regime of gasification and PAC combustion, respectively, have been also estimated to be dependent on waste composition. The wastes and combustion products including chlorine-containing combustion products have been characterized using standard procedures and various analytical procedures developed for this study. The formation of water as a secondary waste was estimated for countercurrent regime of gasification, which was important for the ultimate processing of tritium-contaminated wastes.