ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
L. A. Bernstein, A. N. Perevezentsev, L. A. Rivkis, A. A. Semenov, B. V. Safronov, A. P. Chukanov, E. V. Polianczyk, G. B. Manelis, S. V. Glazov, I. A. Revelsky, E. S. Brodsky, E. N. Kapinus
Fusion Science and Technology | Volume 58 | Number 2 | October 2010 | Pages 625-657
Technical Paper | doi.org/10.13182/FST10-A10889
Articles are hosted by Taylor and Francis Online.
Maintenance of the Joint European Torus (JET) reactor led to generation of soft housekeeping materials contaminated with tritium and comprising various polymeric materials. Some of the wastes fall into the category of intermediate-level waste and require processing to reduce the volume and/or change the category to low-level waste. Plasma arc centrifuge (PAC) combustion and countercurrent regime of gasification have been studied as candidates for a future waste treatment facility for JET tritium-contaminated wastes. This study was carried out for JET wastes that did not contain tritium. Mass reduction factors from 8 to 46 and from 35 to 143 for countercurrent regime of gasification and PAC combustion, respectively, have been demonstrated to be dependent on waste composition. Volume reduction factors from 20 to 100 and from 95 to 400 for countercurrent regime of gasification and PAC combustion, respectively, have been also estimated to be dependent on waste composition. The wastes and combustion products including chlorine-containing combustion products have been characterized using standard procedures and various analytical procedures developed for this study. The formation of water as a secondary waste was estimated for countercurrent regime of gasification, which was important for the ultimate processing of tritium-contaminated wastes.