ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
Playing the “bad guy” to enhance next-generation safety
Sometimes, cops and robbers is more than just a kid’s game. At the Department of Energy’s national laboratories, researchers are channeling their inner saboteurs to discover vulnerabilities in next-generation nuclear reactors, making sure that they’re as safe as possible before they’re even constructed.
S. Imagawa, T. Mito, K. Takahata, S. Yamada, N. Yanagi, H. Chikaraishi, R. Maekawa, H. Tamura, A. Iwamoto, S. Hamaguchi, T. Obana, T. Okamura, Y. Shirai, T. Ise, T. Hamajima, LHD Experiment Group
Fusion Science and Technology | Volume 58 | Number 1 | July-August 2010 | Pages 560-570
Chapter 12. Superconducting Magnet System | Special Issue on Large Helical Device (LHD) | doi.org/10.13182/FST10-A10843
Articles are hosted by Taylor and Francis Online.
The Large Helical Device (LHD) is one of the world's largest superconducting systems. It consists of a pair of pool-cooled helical coils, three pairs of forced-flow-cooled poloidal coils, nine superconducting bus lines, a helium liquefier and refrigerator of 10-kW class, and six dc power supplies. Its stored magnetic energy reaches 0.8 GJ. Availability higher than 99% has been achieved in the long-term continuous operation since the first cooldown in February 1998 owing to the robustness of the systems and to efforts of maintenance and operation. One major problem is shortage of cryogenic stability of the helical coil conductor due to the slow current diffusion into a thick pure aluminum stabilizer. To improve its cryogenic stability by lowering the temperature, a subcooling system was installed before the tenth cooldown. The outlet temperature of the coil was successfully lowered to 3.8 K from 4.4 K of the saturated temperature, and its operation current was increased to 11.6 kA from 11.0 kA. These experiences of modification, maintenance, and operation should be useful for next large superconducting systems.