ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
DOE signs two more OTAs in Reactor Pilot Program
This week, the Department of Energy has finalized two new other transaction agreements (OTAs) with participating companies in its Reactor Pilot Program, which aims to get one or two fast-tracked reactors on line by July 4 of this year. Those companies are Terrestrial Energy and Oklo.
H. Igami, S. Kubo, T. Shimozuma, Y. Yoshimura, T. Notake, H. Takahashi, H. Idei, S. Inagaki, H. Tanaka, K. Nagasaki, K. Ohkubo, T. Mutoh, LHD Experiment Group
Fusion Science and Technology | Volume 58 | Number 1 | July-August 2010 | Pages 539-550
Chapter 11. Electron Cyclotron Resonance Heating | Special Issue on Large Helical Device (LHD) | doi.org/10.13182/FST10-A10841
Articles are hosted by Taylor and Francis Online.
For expanding applicable parameter ranges of electron cyclotron resonance heating (ECRH), various methods of ECRH have been studied with use of millimeter-wave sources of 77-, 82.7-, 84-, and 168-GHz gyrotrons in the Large Helical Device (LHD). The fundamental ordinary (O-) mode and the second-harmonic extraordinary (X-) mode are mainly used for starting up, sustaining, and controlling the plasma. Heating efficiencies of ECRH by launching of these modes have been investigated experimentally for wide range of the central electron density and compared with power absorption rates obtained by ray-tracing calculation. ECRH by the third-harmonic X-mode has been performed in each magnetic configuration Bax = 1 and 2 T with launching of 84-GHz range and 168-GHz millimeter waves. Increases of the electron temperature and the stored energy were observed in both cases. ECRH by the electrostatic electron Bernstein wave (EBW) has been expected to be a promising substitute in parameter ranges where the conventional methods of ECRH by the electromagnetic modes are not available. To perform ECRH by the EBW in LHD, extraordinary-EBW (X-B) and ordinary-extraordinary-EBW (O-X-B) mode conversion processes, the propagation of the wave, and the absorption have been investigated experimentally and theoretically.