ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
R. Kumazawa, T. Mutoh, K. Saito, T. Seki, H. Kasahara, M. Tokitani, S. Masuzaki, N. Ashikawa, Y. Nakamura, S. Kubo, T. Shimozuma, Y. Yoshimura, H. Igami, H. Takahashi, Y. Takeiri, K. Tsumori, M. Osakabe, K. Ikeda, K. Nagaoka, O. Kaneko, M. Goto, K. Sato, H. Chikaraishi, K. Ida, Y. Nagayama, Y. Zhao, J. G. Kwak, J. S. Yoon, LHD Experiment Group
Fusion Science and Technology | Volume 58 | Number 1 | July-August 2010 | Pages 524-529
Chapter 10. Ion Cyclotron Range of Frequency Heating | Special Issue on Large Helical Device (LHD) | doi.org/10.13182/FST10-A10839
Articles are hosted by Taylor and Francis Online.
As one of the main objectives of operation of the Large Helical Device (LHD), long-pulse plasma discharge experiments have been carried out using ion cyclotron range of frequency (ICRF) heating power (mainly using a minority heating method). Discharges with electron density ne < 1019 m-3 and Te0 > 1 keV have been sustained with an ICRF heating power around [approximately]1 MW and an electron cyclotron heating power of [approximately]0.1 MW. The total injected heating energy exceeded 1.6 GJ. Many technological improvements were made before undertaking long-pulse plasma discharges, e.g., the installation of a steady-state high-rf power generator and a liquid stub tuner capable of real-time impedance matching. Over the past decade, the achieved pulse length has increased to 1 h. One of the keys to this success was dispersion of the local plasma heat load onto divertors, which was accomplished by cyclically sweeping the magnetic axis inward and outward. Eventually, the plasma terminated due to the penetration of impurities, which originated from the release of thin flakes on the divertor plates. The pulse length was extended by installing new divertor plates with better thermal conduction. A mode conversion heating scenario has been considered as an alternative to the minority ICRF heating scenario; the former may have advantages due to the lack of an ion cyclotron resonance layer in front of the antennas in the mode conversion case.