ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
Playing the “bad guy” to enhance next-generation safety
Sometimes, cops and robbers is more than just a kid’s game. At the Department of Energy’s national laboratories, researchers are channeling their inner saboteurs to discover vulnerabilities in next-generation nuclear reactors, making sure that they’re as safe as possible before they’re even constructed.
B. J. Peterson, S. Yoshimura, E. A. Drapiko, D. C. Seo, N. Ashikawa, J. Miyazawa
Fusion Science and Technology | Volume 58 | Number 1 | July-August 2010 | Pages 412-417
Chapter 8. Diagnostics | Special Issue on Large Helical Device (LHD) | doi.org/10.13182/FST10-A10826
Articles are hosted by Taylor and Francis Online.
Bolometers are a powerful tool for diagnosing plasma radiation in a reactor-relevant environment. Resistive and imaging bolometers have been applied to the Large Helical Device (LHD) to measure radiative phenomena. Installed on LHD are 56 channels of resistive bolometers at four different ports, providing total radiated power measurements and radial profiles with 5-ms temporal resolution. Calibration coefficients are seen to vary slightly year to year. Imaging bolometer foils are installed at four ports. Infrared cameras have been used at some of these ports to provide an image of the foil temperature, which can be analyzed to give an image of the radiated power absorbed by the foil. Upgrades of existing imaging bolometers using platinum foils and more advanced infrared cameras with frame rates of 345 and 420 frames/s (minimum time resolutions of 3 and 2.5 s, respectively) are introduced. Variations of the thermal parameters on thin platinum (2.5-m) foils are measured in a calibration experiment. The thermal properties of the foil can be quantified experimentally by measuring the responses of the foil temperature in the form of the peak change in temperature and thermal time (average of thermal decay and rise times) to a chopped HeNe laser. These measurements are made in 1-cm increments moving in two dimensions across the foil or at 63 separate locations. The imaging bolometers are intended to give images of complex three-dimensional radiative phenomena and ultimately provide the data for one-, two-, and three-dimensional tomographic inversions.