ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
M. Goto, S. Morita, H. Y. Zhou, C. F. Dong, LHD Experiment Group
Fusion Science and Technology | Volume 58 | Number 1 | July-August 2010 | Pages 394-411
Chapter 8. Diagnostics | Special Issue on Large Helical Device (LHD) | doi.org/10.13182/FST10-A10825
Articles are hosted by Taylor and Francis Online.
Various types of spectrometers corresponding to different wavelength ranges from X-ray to visible have been developed for the Large Helical Device (LHD). The charge-coupled device is demonstrated to be a suitable solution as a detector for spectral measurements irrespective of the wavelength range. In the ultraviolet (UV)-visible range, an astigmatism-corrected 1.3-m Czerny-Turner-type spectrometer is developed for a simultaneous measurement with 80 lines of sight. Two other UV-visible spectrometers having focal lengths of 0.3 and 0.5 m, respectively, are also prepared for wide wavelength range measurements. An in situ sensitivity calibration is attempted for these spectrometers, for which visible bremsstrahlung from the LHD plasma is utilized. In the vacuum ultraviolet range (30 to 310 nm), a normal incidence spectrometer having a focal length of 3 m is developed for a spatial intensity profile measurement of impurity ions, especially in the plasma boundary region, and for measurements of line broadening of several impurity ions. A number of forbidden emission lines due to magnetic dipole transitions are also identified with this spectrometer. In the extreme ultraviolet range (1 to 50 nm), flat-field spectrometers are developed for measurements of emission lines from high-Z impurities in the plasma core. Two types of gratings, i.e., mechanically ruled and laminar-type holographic, have been tested, and the latter is found to be preferable with respect to the reflectivity and the resolution power. A Johann-type X-ray crystal spectrometer is developed for measurements of the central ion temperature, for which the resonance line of Ar XVII ion (1s2 1S0 - 1s2p 1P1) is mainly used. The central ion temperature is routinely measured with high time resolution.