ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
From operator to entrepreneur: David Garcia applies outage management lessons
David Garcia
If ComEd’s Zion plant in northern Illinois hadn’t closed in 1998, David Garcia might still be there, where he got his start in nuclear power as an operator at age 24.
But in his ninth year working there, Zion closed, and Garcia moved on to a series of new roles—including at Wisconsin’s Point Beach plant, the corporate offices of Minnesota’s Xcel Energy, and on the supplier side at PaR Nuclear—into an on-the-job education that he augmented with degrees in business and divinity that he sought later in life.
Garcia started his own company—Waymaker Resource Group—in 2014. Recently, Waymaker has been supporting Holtec’s restart project at the Palisades plant with staffing and analysis. Palisades sits almost exactly due east of the fully decommissioned Zion site on the other side of Lake Michigan and is poised to operate again after what amounts to an extended outage of more than three years. Holtec also plans to build more reactors at the same site.
For Garcia, the takeaway is clear: “This industry is not going away. Nuclear power and the adjacent industries that support nuclear power—and clean energy, period—are going to be needed for decades upon decades.”
In July, Garcia talked with Nuclear News staff writer Susan Gallier about his career and what he has learned about running successful outages and other projects.
M. Goto, S. Morita, H. Y. Zhou, C. F. Dong, LHD Experiment Group
Fusion Science and Technology | Volume 58 | Number 1 | July-August 2010 | Pages 394-411
Chapter 8. Diagnostics | Special Issue on Large Helical Device (LHD) | doi.org/10.13182/FST10-A10825
Articles are hosted by Taylor and Francis Online.
Various types of spectrometers corresponding to different wavelength ranges from X-ray to visible have been developed for the Large Helical Device (LHD). The charge-coupled device is demonstrated to be a suitable solution as a detector for spectral measurements irrespective of the wavelength range. In the ultraviolet (UV)-visible range, an astigmatism-corrected 1.3-m Czerny-Turner-type spectrometer is developed for a simultaneous measurement with 80 lines of sight. Two other UV-visible spectrometers having focal lengths of 0.3 and 0.5 m, respectively, are also prepared for wide wavelength range measurements. An in situ sensitivity calibration is attempted for these spectrometers, for which visible bremsstrahlung from the LHD plasma is utilized. In the vacuum ultraviolet range (30 to 310 nm), a normal incidence spectrometer having a focal length of 3 m is developed for a spatial intensity profile measurement of impurity ions, especially in the plasma boundary region, and for measurements of line broadening of several impurity ions. A number of forbidden emission lines due to magnetic dipole transitions are also identified with this spectrometer. In the extreme ultraviolet range (1 to 50 nm), flat-field spectrometers are developed for measurements of emission lines from high-Z impurities in the plasma core. Two types of gratings, i.e., mechanically ruled and laminar-type holographic, have been tested, and the latter is found to be preferable with respect to the reflectivity and the resolution power. A Johann-type X-ray crystal spectrometer is developed for measurements of the central ion temperature, for which the resonance line of Ar XVII ion (1s2 1S0 - 1s2p 1P1) is mainly used. The central ion temperature is routinely measured with high time resolution.