ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
K. Ida, M. Yoshinuma, C. Suzuki, T. Kobuchi, K. Y. Watanabe, LHD Experiment Group
Fusion Science and Technology | Volume 58 | Number 1 | July-August 2010 | Pages 383-393
Chapter 8. Diagnostics | Special Issue on Large Helical Device (LHD) | doi.org/10.13182/FST10-A10824
Articles are hosted by Taylor and Francis Online.
Radial profiles of the rotational transform are measured with the motional Stark effect spectroscopy in the Large Helical Device. They are derived from the radial profiles of the polarization angle of the and components in the H line emitted from high-energy hydrogen atoms of beams with four sets of linear polarizers, spectrometers, and charge-coupled device detectors. Changes in the rotational transform due to the neutral beam current drive (NBCD) and the electron cyclotron current drive are measured. When NBCD is in the direction counter to the equivalent plasma current, the central rotational transform increases because of the inductive current while the edge rotational transform decreases, as is expected. Therefore, the magnetic shear becomes weak with NBCD in the counterdirection, whereas it becomes strong with NBCD in the codirection. NBCD that drives toroidal current, typically <10% of the equivalent toroidal current determined by the external current in the helical coils, can change the rotational transform and magnetic shear significantly enough to change magnetohydrodynamic stability.