ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
Industry Update—August 2025
Here is a recap of industry happenings from the recent past:
SMR service center targeted for Ontario
GE Vernova Hitachi Nuclear Energy has announced plans to invest as much as $50 million to establish a Canadian BWRX-300 Engineering and Service Center near Ontario Power Generation’s Darlington New Nuclear Project site. The Ontario government had previously approved the construction of the first of four BWRX-300 small modular reactors at the site. The center will provide engineering and technical services for the long-term operation and maintenance of the future fleet of SMRs in Ontario. It will also serve as a hub for innovation and training, knowledge sharing, supply chain engagement, and workforce development.
S. Masuzaki, M. Kobayashi, M. Tokitani, N. Ashikawa, T. Hino, Y. Yamauchi, Y. Nobuta, N. Yoshida, M. Miyamoto, R. Sakamoto, J. Miyazawa, T. Morisaki, N. Ohyabu, H. Yamada, A. Komori, LHD Experiment Group
Fusion Science and Technology | Volume 58 | Number 1 | July-August 2010 | Pages 321-330
Chapter 7. Plasmas-Wall Interactions | Special Issue on Large Helical Device (LHD) | doi.org/10.13182/FST10-A10818
Articles are hosted by Taylor and Francis Online.
A global particle balance study has been investigated in the Large Helical Device (LHD) in which the first wall and the divertor tiles are made of stainless steel (SUS-316L) and carbon, respectively. The carbon area is less than 10% of the stainless steel area. The analyzed discharges have been conducted under an intrinsic helical divertor (HD) or a local island divertor (LID). The HD is an open divertor at this stage, and the LID is a closed divertor equipped with a baffle structure and a pump system. In the HD configuration, fuel retention up to 75% of injected hydrogen was observed, and the retained hydrogen affected the plasma density control. On the other hand, almost all fueled hydrogen was evacuated by the pumps in the LID configuration. After each experimental campaign, detailed analyses of the in-vessel material probes (SUS-316L stainless steel) and a divertor tile exposed to various plasma discharges during each experimental campaign were conducted. The areal density of the retained hydrogen both in the material probes and the divertor tile was in the range 1021 to 1022 H/m2 , and it corresponded to the averaged areal density that was observed after an experimental day with high-density discharges.