ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
M. Tokitani, N. Yoshida, M. Miyamoto, T. Hino, Y. Nobuta, S. Masuzaki, N. Ashikawa, A. Sagara, N. Noda, H. Yamada, A. Komori, LHD Experiment Group
Fusion Science and Technology | Volume 58 | Number 1 | July-August 2010 | Pages 305-320
Chapter 7. Plasmas-Wall Interactions | Special Issue on Large Helical Device (LHD) | doi.org/10.13182/FST10-A10817
Articles are hosted by Taylor and Francis Online.
The Large Helical Device (LHD) has been equipped with movable- and fixed-type material probe systems. Characterization studies of surface modifications on plasma-facing components (PFCs) have been actively progressing by using these probes. After exposure of the PFCs to the plasma, various kinds of surface analysis were conducted. The first walls and divertor tiles of LHD are made of stainless steel and isotropic graphite (IG-430U, Toyo Tanso Co., Ltd.), respectively. They are frequently exposed not only to high-power pulsed main discharges but also to wall-conditioning processes such as glow discharge cleaning (GDC). Thus, the surfaces of the PFCs are drastically changed due to sputtering erosion, impurity deposition, and melting damage. Graphite divertor tiles are eroded primarily during the main discharges; the eroded carbon migrates and deposits on the first-wall surfaces, particularly near the divertor array. First walls are eroded mainly during GDC, which significantly changes the condition of the PFCs. During the main discharges, the majority of incidence particles to the first wall are energetic neutrals (CX neutrals) generated by charge-exchange collisions. Studies of the material damage caused by CX neutrals also have been done. In this paper, the characteristics of surface modifications of PFCs by means of material probe experiments and subsequent surface analysis are summarized.