ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
M. Kobayashi, Y. Feng, S. Morita, S. Masuzaki, N. Ezumi, T. Kobayashi, M. B. Chowdhuri, H. Yamada, T. Morisaki, N. Ohyabu, M. Goto, I. Yamada, K. Narihara, A. Komori, O. Motojima, LHD Experiment Group
Fusion Science and Technology | Volume 58 | Number 1 | July-August 2010 | Pages 220-231
Chapter 5. Divertor and Edge Physics | Special Issue on Large Helical Device (LHD) | doi.org/10.13182/FST10-A10809
Articles are hosted by Taylor and Francis Online.
Transport characteristics of the stochastic magnetic boundary of the Large Helical Device (LHD) are investigated, based on three-dimensional Monte-Carlo Braginskii-type fluid model code, EMC3, coupled with the kinetic neutral transport code EIRENE, in direct comparison with experimental observations for aspects of the relation between the magnetic topology and the resulting transport in terms of counter acting flux tube flows and impurity screening/transport. Divertor probe measurements show a rather weak divertor parameter dependence on upstream density in contrast to those of tokamaks at high-recycling regime. This is found to be due to the loss of parallel momentum via cross-field interaction between the stochastic flux tubes, where strong flow shear exists. The three-dimensional modeling predicts an impurity screening potential of the stochastic scrape-off layer (SOL) at high densities. The remnant island geometry affects the energy transport, which leads to suppression of the thermal forces by increasing cross-field energy flux across islands at high collisionality. The screening effect is most pronounced at the edge surface layers with a strong friction force exerted by the background plasma flow, where the flow toward divertor is enhanced due to the rich ionization source. Modeling results are compared to the edge carbon emission obtained in experiments, where a reasonable agreement on the density dependence is found, indicating the existence of the impurity screening mechanism in the stochastic SOL of LHD.