ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
K. Y. Watanabe, Y. Suzuki, S. Sakakibara, T. Yamaguchi, Y. Narushima, Y. Nakamura, K. Ida, N. Nakajima, H. Yamada, LHD Experiment Group
Fusion Science and Technology | Volume 58 | Number 1 | July-August 2010 | Pages 160-175
Chapter 4. MHD | Special Issue on Large Helical Device (LHD) | doi.org/10.13182/FST10-A10803
Articles are hosted by Taylor and Francis Online.
In the vacuum of the Large Helical Device (LHD), we can change the plasma volume, the aspect ratio, the ellipticity, the rotational transform, and the height of the magnetic hill through the control of the vertical and the qudrupole components of the magnetic field and the helical coil pitch parameter. The two effects of the finite beta on the magnetohydrodynamic (MHD) configuration, the magnetic surface torus outward shift and the invasion of the stochastic region into the plasma core, are discussed. The former is qualitatively the same as that by the external vertical field control. According to the comparison between a theoretical prediction in the finite beta and the vacuum field calculation in the vertical field control, the latter effect is strongly affected by the nonaxisymmetric component of the equilibrium current. A theoretical prediction suggests that an MHD equilibrium beta limit different from the conventional one exists due to the lack of the equilibrium force balance in the stochastic region. The key parameters to improve the accuracy of the identification of the MHD equilibrium configuration are shown to be the identification of the toroidal current profile, the anisotropic pressure effect, and the identification of the plasma boundary shape.