ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
Bongju Lee, Neil Pomphrey, Lang L. Lao
Fusion Science and Technology | Volume 36 | Number 3 | November 1999 | Pages 278-288
Technical Paper | doi.org/10.13182/FST99-A108
Articles are hosted by Taylor and Francis Online.
The Korea Superconducting Tokamak Advanced Research (KSTAR) tokamak will have superconducting magnets for both the poloidal field (PF) coils and the toroidal field (TF) coils. The physical arrangement of the PF configuration has 14 coils external to the TF coils. The analysis of the equilibrium flexibility of the KSTAR PF system determines the coil currents required to maintain prescribed equilibrium configurations over the desired range of operational parameters specified for Ip (q95), N, and li(3). Constraints on the plasma separatrix and the flux linkage through the geometric center of the plasma are specified for the free-boundary equilibrium calculations. The ripple magnitude due to the finite number of TF coils and the size of the port for the neutral beam (NB) injector determine the number, size, and shape of TF coils. Two ripple criteria for a shaped plasma are used for types of ripple transport. The current design of the TF coil, with 16 coils and a D shape, is big enough to satisfy requirements for the ripple magnitude at the plasma and to provide adequate access for tangential NB injection. The external magnetic diagnostics, magnetic probes and flux loops to detect the plasma boundary are designed by the EFIT code, which uses a realistic distributed current source constrained by equilibrium. The proposed configuration with 52 full toroidal flux loops and 78 magnetic probes results in <0.7 cm deviation at critical points, with the Gaussian-distributed 3% random root-mean-square perturbation in the signal.