ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
Industry Update—August 2025
Here is a recap of industry happenings from the recent past:
SMR service center targeted for Ontario
GE Vernova Hitachi Nuclear Energy has announced plans to invest as much as $50 million to establish a Canadian BWRX-300 Engineering and Service Center near Ontario Power Generation’s Darlington New Nuclear Project site. The Ontario government had previously approved the construction of the first of four BWRX-300 small modular reactors at the site. The center will provide engineering and technical services for the long-term operation and maintenance of the future fleet of SMRs in Ontario. It will also serve as a hub for innovation and training, knowledge sharing, supply chain engagement, and workforce development.
K. Ida, S. Inagaki, M. Yoshinuma, N. Tamura, T. Morisaki, LHD Experiment Group
Fusion Science and Technology | Volume 58 | Number 1 | July-August 2010 | Pages 113-121
Chapter 3. Confinement and Transport | Special Issue on Large Helical Device (LHD) | doi.org/10.13182/FST10-A10798
Articles are hosted by Taylor and Francis Online.
Radial profiles of the space potential are measured at the n/m = 1/1 magnetic island produced by external perturbation coils in the Large Helical Device (LHD). Both the temperature and space potential are flat inside the magnetic island, and the large radial electric field shear appears at the boundary of the magnetic island because the radial electric field is zero inside the magnetic island. However, when the width of the magnetic island becomes large, the space potential profile becomes peaked because of the convective flow along the magnetic flux surface inside the magnetic island around the O point. The appearance of the convective flow suggests that the perpendicular viscosity is significantly reduced inside the magnetic island. The perturbation transport study using the cold-pulse propagation is a useful tool to study the transport inside the magnetic island, where the temperature gradient is zero in the steady state. Inside the magnetic island, the cold-pulse propagates slowly from the boundary toward the center, and radial profiles of the delay time are peaked at the magnetic island. The large delay time (slow pulse propagation) indicates that the thermal diffusivity is even small inside the magnetic island. These experimental results indicate that the heat and momentum transport are significantly improved inside the magnetic island although the temperature and flow gradients are zero due to the lack of heat and momentum fluxes.