ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
S. Morita, M. Goto, S. Muto, H. Y. Zhou, C. F. Dong, LHD Experiment Group
Fusion Science and Technology | Volume 58 | Number 1 | July-August 2010 | Pages 91-102
Chapter 3. Confinement and Transport | Special Issue on Large Helical Device (LHD) | doi.org/10.13182/FST10-A10796
Articles are hosted by Taylor and Francis Online.
Impurity transport has been studied in the Large Helical Device (LHD) with different diagnostic approaches based on an active method that combine carbon pellet injection with visible bremsstrahlung measurement and three passive methods for radial profile measurements of Ar and Fe K X-ray lines, Zeff, and extreme ultraviolet (EUV, 500 Å) impurity line emissions, in addition to usual passive spectroscopy. The existence of an inward convective velocity is confirmed in the edge region ( > 0.6) using the active method, whereas no convection is required in the core region ( < 0.6). The electron density dependence is weak for the diffusion coefficient (typically D = 0.15 to 0.25 m2 /s) for densities of 1 to 5 × 1013 cm-3 but is strong for the inward convective velocity, which varies in the range of V(a) = -0.2 to -1.5 m/s. The inward V in helium plasmas (-0.4 m/s at = 0.8 and the central density, ne [approximately] 4.0 × 1013 cm-3) is nearly half that in hydrogen plasmas (-0.7 m/s). This difference suggests a charge state dependence of fuel ions predicted by the neoclassical theory. Radial profiles of impurity transport coefficients of argon and iron have been studied using spatially resolved soft X-ray pulse-height analyzers. The impurity transport has also been studied in extremely high density discharges achieved by H2 pellet injection based on the passive spectroscopy and Zeff profile measurement. A flat Zeff profile is obtained at ne = 2.5 × 1014 cm-3 with values of 1.1 Zeff 1.2, suggesting no existence of impurity accumulation and radially constant impurity partial pressure. Finally, radial profiles of impurity lines in the EUV range are analyzed with the transport coefficients.