ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
K. Toi, F. Watanabe, S. Ohdachi, S. Morita, X. Gao, K. Narihara, S. Sakakibara, K. Tanaka, T. Tokuzawa, H. Urano, A. Weller, I. Yamada, L. Yan, LHD Experiment Group
Fusion Science and Technology | Volume 58 | Number 1 | July-August 2010 | Pages 61-69
Chapter 3. Confinement and Transport | Special Issue on Large Helical Device (LHD) | doi.org/10.13182/FST10-A10794
Articles are hosted by Taylor and Francis Online.
The L-H transition was observed in a unique helical divertor configuration where the core plasma is surrounded by ergodic layer, exhibiting rapid increase in edge electron density with sudden depression of H emission. Just after the transition, edge transport barrier (ETB) is formed at the plasma edge in the magnetic hill region, developing a steep density gradient. ETB region extends in ergodic layer beyond the last closed flux surface defined by the vacuum field. The transition occurs in relatively high beta plasmas when neutral beam absorbed power (Pabs) exceeds one to three times the ITER H-mode power threshold. Improvement of energy confinement time is modest (<1.1) for the ISS95 international stellarator scaling, whereas the particle confinement is clearly improved. The ETB width tends to increase with the increase in the toroidal beta at the ETB shoulder. ETB formation leads to destabilization of edge magnetohydrodynamic (MHD) modes with m/n = 2/3 or 1/2 (m and n being the poloidal and toroidal mode numbers) in ETB region of the inward-shifted configurations. Edge-localized modes (ELMs) are excited by these edge MHD modes through nonlinear evolution. Sometimes in outward-shifted plasmas, edge MHD modes are clearly suppressed in the H-phase and lead to an ELM-free H-mode. When large m/n = 1/1 resonant magnetic perturbations are applied to neutral beam injection-heated plasmas, the transition takes place at lower line-averaged electron density having the modest increase in electron temperature and small-amplitude ELMs.