ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
INL’s Teton supercomputer open for business
Idaho National Laboratory has brought its newest high‑performance supercomputer, named Teton, online and made it available to users through the Department of Energy’s Nuclear Science User Facilities program. The system, now the flagship machine in the lab’s Collaborative Computing Center, quadruples INL’s total computing capacity and enters service as the 85th fastest supercomputer in the world.
K. Nagaoka, Y. Takeiri, S. Morita, K. Ida, M. Yokoyama, M. Yoshinuma, H. Funaba, S. Murakami, T. Minami, K. Tanaka, T. Ido, A. Shimizu, K. Ikeda, M. Osakabe, K. Tsumori, O. Kaneko, LHD Experiment Group
Fusion Science and Technology | Volume 58 | Number 1 | July-August 2010 | Pages 46-52
Chapter 3. Confinement and Transport | Special Issue on Large Helical Device (LHD) | doi.org/10.13182/FST58-46
Articles are hosted by Taylor and Francis Online.
Ion heating experiments have been intensively carried out in high- and low-Zeff conditions of Large Helical Device plasmas. In high-Zeff plasmas utilizing neon or argon gus puffing, the ion heating power normalized by ion density (Pi /ni) increases with ZeffL and the central ion temperature increases with Pi /ni without saturation. The central ion temperature of 13.5 kV was achieved in an argon-seeded plasma, strongly suggesting the capability of the helical configuration to confine high-performance plasmas. In low-Zeff experiments, improvement of ion heat transport was realized in the core plasmas heated by high-power neutral beam injections. The ion temperature has a peaked profile with steep gradient in the core region (ion internal transport barrier). The transport analysis indicates that the anomalous transport is reduced in the core region, where the negative radial electric field is predicted by the neoclassical ambipolarity. Improvement of ion heat transport with positive radial electric field was also successfully demonstrated utilizing strongly focused electron cyclotron resonant heating, suggesting further improvement of ion heat transport in reactor-relevant plasmas.