ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Modernizing I&C for operations and maintenance, one phase at a time
The two reactors at Dominion Energy’s Surry plant are among the oldest in the U.S. nuclear fleet. Yet when the plant celebrated its 50th anniversary in 2023, staff could raise a toast to the future. Surry was one of the first plants to file a subsequent license renewal (SLR) application, and in May 2021, it became official: the plant was licensed to operate for a full 80 years, extending its reactors’ lifespans into 2052 and 2053.
K. Nagaoka, Y. Takeiri, S. Morita, K. Ida, M. Yokoyama, M. Yoshinuma, H. Funaba, S. Murakami, T. Minami, K. Tanaka, T. Ido, A. Shimizu, K. Ikeda, M. Osakabe, K. Tsumori, O. Kaneko, LHD Experiment Group
Fusion Science and Technology | Volume 58 | Number 1 | July-August 2010 | Pages 46-52
Chapter 3. Confinement and Transport | Special Issue on Large Helical Device (LHD) | doi.org/10.13182/FST58-46
Articles are hosted by Taylor and Francis Online.
Ion heating experiments have been intensively carried out in high- and low-Zeff conditions of Large Helical Device plasmas. In high-Zeff plasmas utilizing neon or argon gus puffing, the ion heating power normalized by ion density (Pi /ni) increases with ZeffL and the central ion temperature increases with Pi /ni without saturation. The central ion temperature of 13.5 kV was achieved in an argon-seeded plasma, strongly suggesting the capability of the helical configuration to confine high-performance plasmas. In low-Zeff experiments, improvement of ion heat transport was realized in the core plasmas heated by high-power neutral beam injections. The ion temperature has a peaked profile with steep gradient in the core region (ion internal transport barrier). The transport analysis indicates that the anomalous transport is reduced in the core region, where the negative radial electric field is predicted by the neoclassical ambipolarity. Improvement of ion heat transport with positive radial electric field was also successfully demonstrated utilizing strongly focused electron cyclotron resonant heating, suggesting further improvement of ion heat transport in reactor-relevant plasmas.