ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Modernizing I&C for operations and maintenance, one phase at a time
The two reactors at Dominion Energy’s Surry plant are among the oldest in the U.S. nuclear fleet. Yet when the plant celebrated its 50th anniversary in 2023, staff could raise a toast to the future. Surry was one of the first plants to file a subsequent license renewal (SLR) application, and in May 2021, it became official: the plant was licensed to operate for a full 80 years, extending its reactors’ lifespans into 2052 and 2053.
A. Komori, H. Yamada, S. Imagawa, O. Kaneko, K. Kawahata, K. Mutoh, N. Ohyabu, Y. Takeiri, K. Ida, T. Mito, Y. Nagayama, S. Sakakibara, R. Sakamoto, T. Shimozuma, K. Y. Watanabe, O. Motojima for LHD Experiment Group
Fusion Science and Technology | Volume 58 | Number 1 | July-August 2010 | Pages 1-11
Chapter 1. Introduction | Special Issue on Large Helical Device (LHD) | doi.org/10.13182/FST58-1
Articles are hosted by Taylor and Francis Online.
The Large Helical Device (LHD) is a heliotron-type device employing large-scale superconducting magnets to enable advanced studies of net-current-free plasmas. The major goal of the LHD experiment is to demonstrate the high performance of helical plasmas in a reactor-relevant plasma regime. Engineering achievements and operational experience greatly contribute to the technological basis for a fusion energy reactor. Thorough exploration for scientific and systematic understanding of the physics in the LHD is an important step to a helical fusion reactor. In the 12 years since the initial operation, the physics database as well as operational experience has been accumulated, and the advantages of stable and steady-state features have been demonstrated by the combination of advanced engineering and the intrinsic physical advantages of helical systems in the LHD. The cryogenic system has been operated for 56 000 h in total without any serious trouble and routinely provides a confining magnetic field up to 2.96 T in steady state. The heating capability to date is 23 MW of neutral beam injection, 3 MW of ion cyclotron resonance frequency, and 2.5 MW of electron cyclotron resonance heating. Highlighted physical achievements are high beta (5.1%), high density (1.2 × 1021 m-3), and steady-state operation (3200 s with 490 kW).